login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002410
Nearest integer to imaginary part of n-th zero of Riemann zeta function.
(Formerly M4924 N2113)
59
14, 21, 25, 30, 33, 38, 41, 43, 48, 50, 53, 56, 59, 61, 65, 67, 70, 72, 76, 77, 79, 83, 85, 87, 89, 92, 95, 96, 99, 101, 104, 105, 107, 111, 112, 114, 116, 119, 121, 123, 124, 128, 130, 131, 133, 135, 138, 140, 141, 143, 146, 147, 150, 151, 153, 156, 158, 159, 161
OFFSET
1,1
COMMENTS
"All these zeros of the form s + it have real part s = 1/2 and are simple. Thus the Riemann hypothesis is true at least for t < 3330657430697." - Wedeniwski
From Daniel Forgues, Jul 24 2009: (Start)
All nontrivial zeros on the critical line, of the form 1/2 + i*t, have an associated conjugate nontrivial zero of the form 1/2 - i*t.
Any nontrivial zeros off the critical line, if ever found, would come in pairs (1/2 +- delta) + i*t, 0 < delta < 1/2. Each of these pairs, again if ever found, would then have their associated conjugate pair (1/2 +- delta) - i*t, 0 < delta < 1/2. (End)
The sequence is not strictly increasing. - Joerg Arndt, Jan 17 2015
The fraction of numbers n such that a(n) = a(n-1) has density 1. There are only finitely many numbers n with a(n) > a(n-1) + 1, see A208436. - Charles R Greathouse IV, Mar 07 2018
Conjecture: Noninteger rationals of the form m/2^bigomega(m) that can be used to approximate this sequence, i.e. a(n) ~~ 2*Pi*A374074(n)/2^bigomega(A374074(n)) - n/2 +- (...), where '~~' means 'close to'. - Friedjof Tellkamp, Jul 04 2024
REFERENCES
Gregory Benford, Gravity's whispers, Futures Column, Nature, 446 (Jul 15 2010), p. 406. [Gravity waves are detected on Earth that turn out to contain a list of the zeros of the Riemann zeta function, essentially this sequence]
E. Bombieri, "The Riemann Hypothesis" in 'The Millennium Prize Problems' Chap. 7 pp. 107-128 Eds: J. Carlson, A. Jaffe & A. Wiles, Amer. Math. Soc. Providence RI 2006.
P. Borwein et al., The Riemann Hypothesis, Can. Math. Soc. (CMS) Ottawa ON 2007.
S. Chowla, Riemann Hypothesis and Hilbert's Tenth Problem, Mathematics and Its Application Series Vol. 4, Taylor & Francis NY 1965.
J. Derbyshire, Prime Obsession, Penguin Books 2004.
K. Devlin, The Millennium Problems, Chapter 1 (pp. 19-62) Basic Books NY 2002.
M. du Sautoy, The Music of the Primes, Fourth Estate/HarperCollins NY 2003.
H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974, p. 96.
C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
A. Ivic, The Riemann Zeta-Function: Theory and Applications, Dover NY 2003.
D. S. Jandu, Riemann Hypothesis and Prime Number Theorem, Infinite Bandwidth Publishing, N. Hollywood CA 2006.
A. A. Karatsuba & S. M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, Berlin 1992.
G. Lachaud, "L'hypothèse de Riemann" in La Recherche No.346 October 2001 pp. 24-30 (or Les Dossiers de La Recherche No. Aug 20 2005 pp. 26-35) Paris.
M. L. Lapidus, In Search of the Riemann Zeros, Amer. Math. Soc. (AMS) Providence RI 2008.
P. Meier & J. Steuding, "L'hypothèse de Riemann" in 'Pour la Science' (French Edition of 'Scientific American') pp 22-9, March 2009, Issue No. 377, Paris.
P. Odifreddi, The Mathematical Century, Chapter 5.2, p. 168, Princeton Univ. Press NJ 2004.
S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Univ. Press, UK 1995.
D. N. Rockmore, Stalking the Riemann Hypothesis, Jonathan Cape UK 2005.
K. Sabbagh, The Riemann Hypothesis, Farrar Straus Giroux NY 2003.
K. Sabbagh, Dr. Riemann's Zeros, Atlantic Books London 2003.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press NY 1986.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
J. Arias-de-Reyna, X-Ray of Riemann's zeta-function, arXiv:math/0309433 [math.NT], 2003.
E. Bogomolny et al., On the spacing distribution of the Riemann zeros:corrections to the asymptotic result, arXiv:math/0602270 [math.NT], 2006.
E. Bogomolny et al., On the spacing distribution of the Riemann zeros: corrections to the asymptotic result, Journal of Physics A: Mathematical and General, Vol. 39, No. 34 (2006), 10743-10754.
J. M. Borwein, D. M. Bradley & R. E. Crandall, Computational strategies for the Riemann zeta function
R. P. Brent, J. van de Lune, H. J. J. te Riele & D. T. Winter, The first 200,000,001 zeros of Riemann's zeta function
C. K. Caldwell, The Prime Glossary, Riemann hypothesis
H. T. Chan, More precise Pair Correlation Conjecture, arXiv:math/0206293 [math.NT], 2002.
H. T. Chan, More precise pair correlation of zeros and primes in short intervals, arXiv:math/0206292 [math.NT], 2002.
A. Y. Cheer & D. A. Goldston, Simple Zeros of the Riemann Zeta-Function, Proc. Am. Math. Soc. 118 (1993) 365.
Y.-J. Choie et al., On Robin's criterion for the Riemann Hypothesis, arXiv:math/0604314 [math.NT], 2006.
Y.-J. Choie et al., On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, Vol 19, No. 2 (2007), 357-372.
J. B. Conrey, The Riemann Hypothesis, Notices of the AMS, Vol. 50, No. 3 (2003), 341-353.
J. B. Conrey & G. Myerson, On the Balazard-Saias criterion for the Riemann Hypothesis, arXiv:math/0002254 [math.NT], 2000.
J. Derbyshire, Prime Obsession
E. Elizalde, V. Moretti & S. Zerbini, On recent strategies proposed for proving Riemann hypothesis, arXiv:math-ph/0109006, 2001.
E. Elizalde, V. Moretti, and S. Zerbini, On Recent Strategies Proposed for Proving the Riemann Hypothesis, International Journal of Modern Physics A, Vol. 18, No. 12 (2003), 2189-2196.
D. W. Farmer, Counting distinct zeros of the Riemann zeta-function, The Electronic Journal of Combinatorics, 2 (1995), #R1.
K. Ford & A Zaharescu, On the distribution of imaginary parts of zeros of the Riemann zeta function, arXiv:math/0405459 [math.NT], 2004.
K. Ford and A. Zaharescu, On the distribution of imaginary parts of zeros of the Riemann zeta function, Journal für die reine und angewandte Mathematik, Vol. 2005, No. 579 (2005), 145-158.
R. Garunkstis and J. Steuding, On the distribution of zeros of the Hurwitz zeta-function, Math. Comput. 76 (2007), 323-337.
R. Garunkstis and J. Steuding, Questions around the Nontrivial Zeros of the Riemann Zeta-Function. Computations and Classifications, Math. Model. Anal. 16 (2011), 72-81.
D. A. Goldston, Notes on Pair Correlation of Zeros and Prime Numbers, arXiv:math/0412313 [math.NT], 2004.
D. A. Goldston & S. M. Gonek, A note on S(T) and the zeros of the Riemann zeta-function, arXiv:math/0511092 [math.NT], 2005.
S. Gonek, Three Lectures on the Riemann Zeta-Function, arXiv:math/0401126 [math.NT], 2004.
X. Gourdon & P. Sebah, The Riemann Zeta-function zeta(s)
J. P. Gram, Note sur les zéros de la fonction zeta(s) de Riemann, Acta Mathematica, 27 (1903), 289-304.
A. Ivic, On some reasons for doubting the Riemann hypothesis, arXiv:math/0311162 [math.NT], 2003.
A. Ivic, On some recent results in the theory of the zeta-function, arXiv:math/0312425 [math.NT], 2003.
D. Jao, PlanetMath.Org, Riemann zeta function
N. M. Katz & P. Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), 1-26.
E. Klarreich, Prime Time
A. F. Lavrik, Riemann hypotheses
N. Levinson, At Least One-Third of Zeros of Riemann's Zeta-Function are on sigma=1/2, Proc Natl Acad Sci U S A. 1974 Apr; 71(4): 1013-1015.
Lionman & Allispaul, Riemann Hypothesis
J. van de Lune, H. J. J. te Riele & D. T. Winter, Rigorous High Speed Separation Of Zeros Of Riemann's Zeta Function
J. van de Lune, H. J. J. te Riele & D. T. Winter, On the Zeros of the Riemann Zeta Function in the Critical Strip, IV
B. Luque & L. Lucasa, The first-digit frequencies of prime numbers and Riemann zeta zeros, Proceedings of The Royal Society A, Apr 22 2009.
N. Ng, Large gaps between the zeros of the Riemann zeta function, arXiv:math/0510530 [math.NT], 2005.
A. M. Odlyzko & H. J. J. te Riele, Disproof of the Mertens Conjecture
K. Ramachandra, 'Current Science' 77(7)951 10.10.1999, On the future of Riemann Hypothesis(pp 1-3/28)
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 6.
J. Sondow and C. Dumitrescu, A monotonicity property of Riemann's xi function and a reformulation of the Riemann Hypothesis, Period. Math. Hungar. 60 (2010), 37-40.
K. Soundararajan, On the Distribution of Gaps between Zeros of the Riemann Zeta Function, in 'The Quarterly Journal of Mathematics' pp. 383-Sep 07 1996 Vol. 47 No. 187 Oxford Univ. Press.
E. C. Titchmarsh, The Zeroes of the Riemann Zeta-Function, Proc. Royal Soc. London, 151 pp. 234-255 1935.
J. van de Lune, H. J. J. te Riele and D. T. Winter, Rigorous High Speed Separation of Zeros of Riemann's Zeta Function, Report NW 113/81, Mathematical Centre, Amsterdam, October 1981.
J. van de Lune, H. J. J. te Riele and D. T. Winter, On the Zeros of the Riemann Zeta Function in the Critical Strip IV, Mathematics of Computation 46 (1986), 667-681.
B. Van der Pol, An Electro-Mechanical Investigation Of The Riemann Zeta-Function In The Critical Strip, Bull. Amer. Math. Soc. 53 (1947), 976-981.
M. R. Watkins, The Riemann Hypothesis
Sebastian Wedeniwski, ZetaGrid
Eric Weisstein's World of Mathematics, Riemann Hypothesis
Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros
Eric Weisstein's World of Mathematics, Xi-Function
FORMULA
a(n) ~ (2*Pi*e) * e^(W0(n/e)), where W0 is the principal branch of Lambert's W function. - Charles R Greathouse IV, Sep 14 2012, corrected by Hal M. Switkay, Oct 04 2021
a(n) ~ 2*Pi*(n - 11/8)/ProductLog((n - 11/8)/exp(1)). This is the asymptotic by Guilherme França and André LeClair. - Mats Granvik, Mar 10 2015; corrected May 16 2016
EXAMPLE
The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453).
MATHEMATICA
Table[Round[Im[ZetaZero[n]]], {n, 59}] (* Jean-François Alcover, May 02 2011 *)
PROG
(Sage)
def A002410_list(n):
Z = lcalc.zeros(n)
return [round(z) for z in Z]
A002410_list(59) # Peter Luschny, May 02 2014
(PARI) apply(round, lfunzeros(lzeta, 100)) \\ Charles R Greathouse IV, Mar 10 2016
CROSSREFS
Cf. A013629 (floor), A092783 (ceiling), A057641, A057640, A058209, A058210, A120401, A122526, A072080, A124288 ("unstable" zeta zeros), A124289 ("unstable twins"), A236212, A177885, A374074 (approximation).
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Sequence in context: A013629 A234802 A162780 * A108606 A129497 A255742
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
STATUS
approved