login
A255742
Integers setting a record for the absolute minimal difference from the imaginary part of a nontrivial zero of the Riemann zeta function.
10
14, 21, 25, 48, 146, 776, 3764, 7847, 7904, 18048, 90930, 92219, 587741
OFFSET
1,1
COMMENTS
We consider here the imaginary part of 1/2 + i*y = z, for which Zeta(z) is a zero.
No more terms below the 600000th nontrivial zero of the Riemann zeta function. - Robert G. Wilson v, Sep 30 2015
Is there an Im(rho_k) that is also an positive integer? Is there a minimum gap between an Im(rho_k) and a positive integer? At present it is not known whether this sequence is finite or infinite. - Omar E. Pol, Oct 13 2015
FORMULA
a(n) = A002410(A255739(n)).
EXAMPLE
-------------------------------------------------------------------
Absolute New
k Im(rho_k) A002410(k) difference record n a(n)
-------------------------------------------------------------------
1 14.134725142 > 14 0.134725142 Yes 1 14
2 21.022039639 > 21 0.022039639 Yes 2 21
3 25.010857580 > 25 0.010857580 Yes 3 25
4 30.424876126 > 30 0.424876126 Not
5 32.935061588 < 33 0.064938412 Not
6 37.586178159 < 38 0.413821841 Not
7 40.918719012 < 41 0.081280988 Not
8 43.327073281 > 43 0.327073281 Not
9 48.005150881 > 48 0.005150881 Yes 4 48
10 49.773832478 < 50 0.226167522 Not
...
where rho_k is the k-th nontrivial zero of Riemann zeta function.
We computed more digits of Im(rho_k), but in the above table only 9 digits after the decimal point appear.
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Omar E. Pol, Mar 16 2015
EXTENSIONS
a(6)-a(10) from Robert G. Wilson v, Sep 29 2015
a(11)-a(12) from Robert G. Wilson v, Sep 30 2015
a(13) using Odlyzko's tables added by Amiram Eldar, Aug 10 2023
STATUS
approved