This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058209 Floor( exp(gamma) n log log n ) - sigma(n), where gamma is Euler's constant (A001620) and sigma(n) is sum of divisors of n (A000203). 9
 -5, -4, -5, -2, -6, 0, -5, -1, -4, 5, -9, 7, 0, 2, -2, 13, -5, 16, -3, 9, 8, 22, -11, 21, 12, 17, 4, 32, -7, 36, 7, 25, 22, 31, -10, 46, 27, 34, 2, 53, 2, 57, 20, 29, 37, 64, -9, 61, 28, 52, 29, 76, 13, 63, 18, 61, 54, 87, -18, 91, 60, 55, 35, 81, 24, 103, 48, 81, 36, 111, -9, 115 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Theorem (G. Robin): exp(gamma) n log log n - sigma(n) is positive for all n >= 5041 if and only if the Riemann Hypothesis is true. Note that a(n) <= exp(gamma) n log log n - sigma(n) < a(n) + 1. REFERENCES D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.2.2.b. G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann, J. Math. Pures Appl. 63 (1984), 187-213. LINKS T. D. Noe, Table of n, a(n) for n = 2..10000 G. Caveney, J.-L. Nicolas, and J. Sondow, Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis, Integers 11 (2011), #A33. G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, Ramanujan J., 29 (2012), 359-384. MAPLE with(numtheory); Digits := 100; g := evalf(gamma); [seq( floor(exp(g)*n*log(log(n)))-sigma[1](n), n=2..80)]; MATHEMATICA a[n_] := Floor[Exp[EulerGamma] n*Log[Log[n]]] - DivisorSigma[1, n]; Array[a, 100, 2] (* Jean-François Alcover, May 04 2011 *) PROG (PARI) a(n)=floor( exp(Euler)*n*log(log(n)) - sigma(n)) \\ Charles R Greathouse IV, Feb 08 2017 CROSSREFS Cf. A000203, A001620, A057641, A057642, A058210. Sequence in context: A293557 A123587 A018840 * A160789 A266111 A131291 Adjacent sequences:  A058206 A058207 A058208 * A058210 A058211 A058212 KEYWORD sign,nice,easy AUTHOR N. J. A. Sloane, Nov 30 2000 EXTENSIONS Statement of Robin's theorem corrected by Jonathan Sondow, May 30 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 07:51 EDT 2019. Contains 322381 sequences. (Running on oeis4.)