login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305743 Decimal expansion of imaginary part of 8th nontrivial zero of Riemann zeta function. 12
4, 3, 3, 2, 7, 0, 7, 3, 2, 8, 0, 9, 1, 4, 9, 9, 9, 5, 1, 9, 4, 9, 6, 1, 2, 2, 1, 6, 5, 4, 0, 6, 8, 0, 5, 7, 8, 2, 6, 4, 5, 6, 6, 8, 3, 7, 1, 8, 3, 6, 8, 7, 1, 4, 4, 6, 8, 7, 8, 8, 9, 3, 6, 8, 5, 5, 2, 1, 0, 8, 8, 3, 2, 2, 3, 0, 5, 0, 5, 3, 6, 2, 6, 4, 5, 6, 3, 4, 9, 3, 7, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Table of n, a(n) for n=2..93.

Andrew M. Odlyzko, Tables of zeros of the Riemann zeta function

OEIS index entries for sequences related to the zeta function.

EXAMPLE

The zero is at 1/2 + I*43.3270732809149995194961221654068... - M. F. Hasler, Nov 21 2018

MATHEMATICA

RealDigits[Im[ZetaZero[8]], 10, 120][[1]] (* Vaclav Kotesovec, Jun 23 2018 *)

PROG

(PARI) solve(X=43, 44, imag(zeta(0.5+X*I))) \\ M. F. Hasler, Nov 21 2018

(PARI) lfunzeros(1, [43, 44])[1] \\ M. F. Hasler, Nov 23 2018

CROSSREFS

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), this sequence (k=8), A305744 (k=9), A306004 (k=10).

Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling).

Sequence in context: A241180 A117323 A016502 * A117691 A243564 A171627

Adjacent sequences:  A305740 A305741 A305742 * A305744 A305745 A305746

KEYWORD

nonn,cons

AUTHOR

Seiichi Manyama, Jun 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 16:27 EST 2020. Contains 331011 sequences. (Running on oeis4.)