OFFSET
1,3
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
John P. Bonomo and Montana Ferita, A Small Fib, College Math. J., 2023.
Nurettin Irmak, Product of arbitrary Fibonacci numbers with distance 1 to Fibonomial coefficient, Turk J Math, (2017) 41: 825-828. See p. 828.
Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
FORMULA
G.f.: x * (1 - x)^2 / ((1 + x) * (1 -3*x + x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = - A121646(n).
a(n) = -a(1-n) for all n in Z.
a(n) = A121801(n+1) / 2. - Michael Somos, Jun 17 2014
a(n) = a(n-1) + A000045(n-1)^2 - 2*(-1)^n, for n>1. - Alexander Samokrutov, Sep 07 2015
a(n) = F(n-1)*F(n) - (-1)^n. - Bruno Berselli, Oct 30 2015
a(n) = 2^(-1-n)*(-(-1)^n*2^(3+n)-(3-sqrt(5))^n*(1+sqrt(5))+(-1+sqrt(5))*(3+sqrt(5))^n)/5. - Colin Barker, Sep 28 2016
From Amiram Eldar, Oct 06 2020: (Start)
Sum_{n>=3} 1/a(n) = (1/2) * A290565 - 1/4.
Sum_{n>=3} (-1)^(n+1)/a(n) = (3/2) * (1/phi - 1/2), where phi is the golden ratio (A001622). (End)
EXAMPLE
G.f. = x + 3*x^3 + 5*x^4 + 16*x^5 + 39*x^6 + 105*x^7 + 272*x^8 + 715*x^9 + ...
MAPLE
a:= n-> (<<0|1|0>, <0|0|1>, <-1|2|2>>^n. <<1, 0, 3>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 28 2016
MATHEMATICA
a[ n_] := Fibonacci[n + 1] Fibonacci[n - 2]; (* Michael Somos, Jun 17 2014 *)
CoefficientList[Series[(1 - x)^2/((1 + x) (1 - 3 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
PROG
(Magma) [Fibonacci(n)^2-Fibonacci(n-1)^2: n in [1..40]]; // Vincenzo Librandi, Jun 18 2014
(PARI) {a(n) = fibonacci( n + 1) * fibonacci( n - 2)};
(PARI) a(n) = round(2^(-1-n)*(-(-1)^n*2^(3+n)-(3-sqrt(5))^n*(1+sqrt(5))+(-1+sqrt(5))*(3+sqrt(5))^n)/5) \\ Colin Barker, Sep 28 2016
(PARI) lista(nn) = {my(p = (3*x-1)/(x^3-2*x^2-2*x+1)); for (n=1, nn, p = deriv(p, x); print1(subst(p, x, 0)/n!, ", "); ); } \\ Michel Marcus, May 22 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jun 06 2013
STATUS
approved