login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084179 Expansion of the g.f. x/((1+2x)(1-x-x^2)). 4
0, 1, -1, 4, -5, 15, -22, 57, -93, 220, -385, 859, -1574, 3381, -6385, 13380, -25773, 53143, -103702, 211585, -416405, 843756, -1669801, 3368259, -6690150, 13455325, -26789257, 53774932, -107232053, 214978335, -429124630, 859595529, -1717012749, 3437550076 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Sums of consecutive pairs yield A084178.

Number of walks of length n+1 between two vertices at distance 2 in the cycle graph C_5. In general a(n,m) = 2^n/m*Sum_{k=0..m-1} cos(4*Pi*k/m)*cos(2*Pi*k/m)^n is the number of walks of length n between two vertices at distance 2 in the cycle graph C_m. - Herbert Kociemba, May 31 2004

LINKS

Robert Israel, Table of n, a(n) for n = 0..3260

Index entries for linear recurrences with constant coefficients, signature (-1,3,2).

FORMULA

Binomial transform is A007598. The unsigned sequence has G.f. x/((1-2x)(1+x-x^2)) with a(n) = 2*2^n/5-(-1)^n*A000032(n)/5. - Paul Barry, Apr 17 2004

a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n, k)*Fib(k)^2; a(n) = ((1/2-sqrt(5)/2)^n+(1/2+sqrt(5)/2)^n-2(-2)^n)/5; a(n) = A000032(n)/5-2(-2)^n/5. - Paul Barry, Apr 17 2004

a(n) = 2^n/5*Sum_{k=0..4} cos(4*Pi*k/5)*cos(2*Pi*k/5)^n. - Herbert Kociemba, May 31 2004

a(n) = -a(n-1) + 3*a(n-2) + 2*a(n-3) for n>2. - Paul Curtz, Mar 09 2008

MAPLE

f:= gfun:-rectoproc({a(n) = -a(n-1)+3*a(n-2)+2*a(n-3),

   a(0)=0, a(1)=1, a(2)=-1}, a(n), remember):

seq(f(n), n=0..100); # Robert Israel, Dec 11 2015

MATHEMATICA

CoefficientList[Series[x / ((1 + 2 x) (1 - x - x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)

PROG

(MAGMA) I:=[0, 1, -1]; [n le 3 select I[n] else -Self(n-1)+3*Self(n-2)+2*Self(n-3): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014

(PARI) concat(0, Vec(x/((1+2*x)*(1-x-x^2)) + O(x^100))) \\ Altug Alkan, Dec 11 2015

CROSSREFS

Cf. A000032, A007598, A084178.

Sequence in context: A225121 A267991 A225536 * A026634 A026656 A184244

Adjacent sequences:  A084176 A084177 A084178 * A084180 A084181 A084182

KEYWORD

easy,sign

AUTHOR

Paul Barry, May 18 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 13:27 EST 2016. Contains 278750 sequences.