This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A121801 Expansion of 2*x^2*(3-x)/((1+x)*(x^2-3*x+1)). 8
 0, 6, 10, 32, 78, 210, 544, 1430, 3738, 9792, 25630, 67106, 175680, 459942, 1204138, 3152480, 8253294, 21607410, 56568928, 148099382, 387729210, 1015088256, 2657535550, 6957518402, 18215019648, 47687540550, 124847601994 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = the area of an irregular quadrilateral with vertices at the points (L(n),L(n+2)), (F(n+2),F(n+3)), (F(n+3),F(n+2)) and (L(n+2),L(n)), with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, Jun 16 2014 a(n+1) appears also as the fourth component of the square of [F(n), F(n+1), F(n+2), F(n+3)], for n >= 0, where F(n) = A000045(n), in the Clifford algebra Cl_2 over Euclidean 2-space. The whole quartet of sequences for this square is [-A248161(n), A079472(n+1), A059929(n), a(n+1)]. See the Oct 15 2014 comment in A147973 where also a reference is given. - Wolfdieter Lang, Nov 01 2014 LINKS Index entries for linear recurrences with constant coefficients, signature (2,2,-1). FORMULA a(n) = 2*a(n-1)+2*a(n-2)-a(n-3). a(n) = -2*A121646(n+1). G.f.: 2*x^2*(3-x)/((1+x)*(x^2-3*x+1)) (see name). From Wolfdieter Lang, Nov 01 2014: (Start) G.f.: (-10 + 8/(1+x) + 2*(1+x)/(1-3*x+x^2))/5 (partial fraction decomposition). a(n) = (8*(-1)^n + 2*(F(2*(n+1)) + F(2*n)))/5 for n >= 1. a(0) = 0. (End) MATHEMATICA c[i_, k_] := Floor[Mod[i/2^k, 2]] b[i_, k_] := If[c[i, k] == 0 && c[ i, k + 1] == 0, 0, If[c[i, k] == 1 && c[i, k + 1] == 1, 0, 1]] n = 4 - 1; M = Table[If[Sum[b[i, k]*b[j, k], {k, 0, n}] == 0, 1, 0], {j, 0, n}, {i, 0, n}] v[1] = {0, 1, 2, 3} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] Det[M - x*IdentityMatrix[4]] Factor[%] aaa = Table[x /. NSolve[Det[M - x*IdentityMatrix[4]] == 0, x][[n]], {n, 1, 4}] Abs[aaa] a1 = Table[N[a[[n]]/a[[n - 1]]], {n, 7, 50}] CoefficientList[Series[2*x*(3 - x)/((1 + x)*(x^2 - 3*x + 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 16 2014 *) LinearRecurrence[{2, 2, -1}, {0, 6, 10}, 30] (* Harvey P. Dale, Jan 06 2015 *) PROG (PARI) concat(0, Vec(2*(3-x)/((1+x)*(x^2-3*x+1))+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012 (MAGMA) I:=[0, 6, 10]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 02 2014 CROSSREFS Sequence in context: A178676 A266957 A137272 * A256721 A192774 A218860 Adjacent sequences:  A121798 A121799 A121800 * A121802 A121803 A121804 KEYWORD nonn,easy AUTHOR Roger L. Bagula and Gary W. Adamson, Aug 27 2006 EXTENSIONS Edited by the Associate Editors of the OEIS, Aug 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 20:08 EST 2018. Contains 318188 sequences. (Running on oeis4.)