login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121801 Expansion of 2*x^2*(3-x)/((1+x)*(1-3*x+x^2)). 9
0, 6, 10, 32, 78, 210, 544, 1430, 3738, 9792, 25630, 67106, 175680, 459942, 1204138, 3152480, 8253294, 21607410, 56568928, 148099382, 387729210, 1015088256, 2657535550, 6957518402, 18215019648, 47687540550, 124847601994 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) = the area of an irregular quadrilateral with vertices at the points (L(n),L(n+2)), (F(n+2),F(n+3)), (F(n+3),F(n+2)) and (L(n+2),L(n)), with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, Jun 16 2014

a(n+1) appears also as the fourth component of the square of [F(n), F(n+1), F(n+2), F(n+3)], for n >= 0, where F(n) = A000045(n), in the Clifford algebra Cl_2 over Euclidean 2-space. The whole quartet of sequences for this square is [-A248161(n), A079472(n+1), A059929(n), a(n+1)]. See the Oct 15 2014 comment in A147973 where also a reference is given. - Wolfdieter Lang, Nov 01 2014

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (2,2,-1).

FORMULA

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).

a(n) = -2*A121646(n+1).

G.f.: 2*x^2*(3-x)/((1+x)*(x^2-3*x+1)) (see name).

From Wolfdieter Lang, Nov 01 2014: (Start)

G.f.: (-10 + 8/(1+x) + 2*(1+x)/(1-3*x+x^2))/5 (partial fraction decomposition).

a(n) = (8*(-1)^n + 2*(F(2*(n+1)) + F(2*n)))/5 for n >= 1. a(0) = 0.

(End)

a(n) = 2*(Fibonacci(n)*Fibonacci(n+1) + (-1)^n). - G. C. Greubel, Jul 22 2019

MATHEMATICA

c[i_, k_] := Floor[Mod[i/2^k, 2]] b[i_, k_] := If[c[i, k] == 0 && c[ i, k + 1] == 0, 0, If[c[i, k] == 1 && c[i, k + 1] == 1, 0, 1]] n = 4 - 1; M = Table[If[Sum[b[i, k]*b[j, k], {k, 0, n}] == 0, 1, 0], {j, 0, n}, {i, 0, n}] v[1] = {0, 1, 2, 3} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] Det[M - x*IdentityMatrix[4]] Factor[%] aaa = Table[x /. NSolve[Det[M - x*IdentityMatrix[4]] == 0, x][[n]], {n, 1, 4}] Abs[aaa] a1 = Table[N[a[[n]]/a[[n - 1]]], {n, 7, 50}]

CoefficientList[Series[2*x*(3-x)/((1+x)*(1-3*x+x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 16 2014 *)

LinearRecurrence[{2, 2, -1}, {0, 6, 10}, 30] (* Harvey P. Dale, Jan 06 2015 *)

With[{F=Fibonacci}, Table[2*(F[n]*F[n+1] +(-1)^n), {n, 30}]] (* G. C. Greubel, Jul 22 2019 *)

PROG

(PARI) concat(0, Vec(2*(3-x)/((1+x)*(1-3*x+x^2))+O(x^30))) \\ Charles R Greathouse IV, Sep 25 2012

(PARI) vector(30, n, f=fibonacci; 2*(f(n)*f(n+1)+(-1)^n) ) \\ G. C. Greubel, Jul 22 2019

(MAGMA) I:=[0, 6, 10]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 02 2014

(MAGMA) [2*(Lucas(2*n+1) +4*(-1)^n))/5: n in [1..30]]; // G. C. Greubel, Jul 22 2019

(Sage) [2*(lucas_number2(2*n+1, 1, -1) +4*(-1)^n)/5 for n in (1..30)] # G. C. Greubel, Jul 22 2019

(GAP) List([1..30], n-> 2*(Lucas(1, -1, 2*n+1)[2] +4*(-1)^n)/5 ); # G. C. Greubel, Jul 22 2019

CROSSREFS

Sequence in context: A178676 A266957 A137272 * A256721 A192774 A218860

Adjacent sequences:  A121798 A121799 A121800 * A121802 A121803 A121804

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula and Gary W. Adamson, Aug 27 2006

EXTENSIONS

Edited by the Associate Editors of the OEIS, Aug 18 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 04:40 EDT 2019. Contains 328211 sequences. (Running on oeis4.)