This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A121646 a(n) = Fibonacci(n-1)^2 - Fibonacci(n)^2. 8
 -1, 0, -3, -5, -16, -39, -105, -272, -715, -1869, -4896, -12815, -33553, -87840, -229971, -602069, -1576240, -4126647, -10803705, -28284464, -74049691, -193864605, -507544128, -1328767775, -3478759201, -9107509824, -23843770275, -62423800997, -163427632720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Negated first differences of A007598. Real part of (F(n-1) + i*F(n))^2. Corresponding imaginary part = A079472(n); e.g., (3 + 5i)^2 = (-16 + 30i) where 30 = A079472(5). Consider a(n) and A079472(n) as legs of a Pythagorean triangle; then hypotenuse = corresponding n-th term in the sequence (1, 2, 5, 13...; i.e., odd indexed Fibonacci terms). a(n)/a(n-1) tends to Phi^2. 3*A001654(n) - A001654(n+1) = A121646(n). - Vladimir Joseph Stephan Orlovsky, Nov 17 2009 REFERENCES Daniele Corradetti, La Metafisica del Numero, 2008 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (2,2,-1). FORMULA a(n) = Re(F(n-1) + F(n)*i)^2 = (F(n-1))^2 - (F(n))^2. G.f.: (1-3*x)/((1+x)*(1 - 3*x + x^2)). - Paul Barry, Oct 13 2006 a(n) = -F(n+1)*F(n-2) where F=A000045. - Ron Knott, Jan 24 2009 a(n) = (4*(-1)^n - |A098149(n)|)/5. - R. J. Mathar, Jan 13 2011 EXAMPLE a(5) = -16 since Re(3 + 5i)^2 = (-16 + 30i). a(5) = -16 = 3^2 - 5^2. MAPLE A121646 := proc(n)     combinat[fibonacci](n+1)*combinat[fibonacci](n-2) ;     -% ; end proc: seq(A121646(n), n=1..10) ; # R. J. Mathar, Jun 22 2017 MATHEMATICA f[n_] := Re[(Fibonacci[n - 1] + I*Fibonacci[n])^2]; Array[f, 29] (* Robert G. Wilson v, Aug 16 2006 *) lst={}; Do[a1=Fibonacci[n]*Fibonacci[n+1]; a2=Fibonacci[n+1]*Fibonacci[n+2]; AppendTo[lst, 3*a1-a2], {n, 0, 60}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *) Table[-Fibonacci[n-2]*Fibonacci[n+1], {n, 1, 40}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *) PROG (PARI) a(n) = fibonacci(n-1)^2 - fibonacci(n)^2 \\ Charles R Greathouse IV, Jun 11 2015 (MAGMA) [-Fibonacci(n-2)*Fibonacci(n+1): n in [1..40]]; // G. C. Greubel, Jan 07 2019 (Sage) [-fibonacci(n-2)*fibonacci(n+1) for n in (1..40)] # G. C. Greubel, Jan 07 2019 (GAP) List([1..40], n -> -Fibonacci(n-2)*Fibonacci(n+1)); # G. C. Greubel, Jan 07 2019 CROSSREFS Cf. A079472. Sequence in context: A077551 A106588 A123785 * A226205 A300533 A221783 Adjacent sequences:  A121643 A121644 A121645 * A121647 A121648 A121649 KEYWORD sign,easy AUTHOR Gary W. Adamson, Aug 13 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 14:27 EDT 2019. Contains 322310 sequences. (Running on oeis4.)