login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226203 a(5n) = a(5n+3) = a(5n+4) = 2n+1, a(5n+1) = 2n-3, a(5n+2) = 2n-1. 2
1, -3, -1, 1, 1, 3, -1, 1, 3, 3, 5, 1, 3, 5, 5, 7, 3, 5, 7, 7, 9, 5, 7, 9, 9, 11, 7, 9, 11, 11, 13, 9, 11, 13, 13, 15, 11, 13, 15, 15, 17, 13, 15, 17, 17, 19, 15, 17, 19, 19, 21, 17, 19, 21, 21, 23, 19, 21, 23, 23, 25, 21, 23, 25, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Given the numerators of A225948/A226008 ordered according to A226096: 0, -15, -3, 2, 3, 6, -7, 5, 12, 15, 20, 9, 21, 30, 35,... = t(n), then (a(n) + t(n)/a(n))^2 =  A226096(n).

First six differences (of period 5):

...-4,   2,   2,   0,   2,  -4,   2,   2,   0,   2, ...

....6,   0,  -2,   2,  -6,   6,   0,  -2,   2,  -6, ...

...-6,  -2,   4,  -8,  12,  -6,  -2,   4,  -8,  12, ...

....4,   6, -12,  20, -18,   4,   6, -12,  20, -18, ...

....2, -18,  32, -38,  22,   2, -18,  32, -38,  22, ...

..-20,  50, -70,  60, -20, -20,  50, -70,  60, -20, ...

LINKS

Table of n, a(n) for n=0..64.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).

FORMULA

a(n+5) = a(n) + 2.

G.f.: (1-4*x+2*x^2+2*x^3+x^5)/((1-x)^2*(1+x+x^2+x^3+x^4)). [Bruno Berselli, Jun 01 2013]

a(n) = a(n-1)+a(n-5)-a(n-6) with a(0)=a(3)=a(4)=1, a(1)=-3, a(2)=-1, a(5)=3. [Bruno Berselli, Jun 01 2013]

MATHEMATICA

a[n_] := 2 Quotient[n, 5] + Switch[Mod[n, 5], 0, 1, 1, -3, 2, -1, 3, 1, 4, 1]; Table[a[n], {n, 0, 64}] (* Jean-Fran├žois Alcover, Jun 22 2017 *)

PROG

(Haskell)

import Data.List (transpose)

a226203 n = a226203_list !! n

a226203_list = concat $ transpose

               [[1, 3 ..], [-3, -1 ..], [-1, 1 ..], [1, 3 ..], [1, 3 ..]]

-- Reinhard Zumkeller, Jun 02 2013

CROSSREFS

Cf. A007395, A005408, A130497, A226096.

Sequence in context: A087612 A260626 A155828 * A327791 A051997 A155744

Adjacent sequences:  A226200 A226201 A226202 * A226204 A226205 A226206

KEYWORD

sign,easy

AUTHOR

Paul Curtz, May 31 2013

EXTENSIONS

Edited by Bruno Berselli, Jun 01 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 01:46 EDT 2020. Contains 337948 sequences. (Running on oeis4.)