This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052156 Number of compositions of n into 2*j-1 kinds of j's for all j>=1. 6
 1, 1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS First differences of A025192, also second differences of A000244. REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196. P. Ribenhoim, The Little Book of Big Primes, Springer-Verlag, N.Y., 1991, p. 53. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 FORMULA a(n) = 4*3^(n-2); n >= 2; a(0) = 1; a(1) = 1. G.f.: (1-x)^2/(1-3*x). G.f.: 1/(1-sum(j>=1, (2*j-1)*x^j )). - Joerg Arndt, Jul 06 2011 a(n) = 3*a(n-1)+(-1)^n*C(2, 2-n). a(n) = A003946(n-1), n>0. - R. J. Mathar, Oct 13 2008 a(n) = (-4*n + 9) * a(n-1) + 3 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011 a(n) = Sum_{k, 0<=k<=n} A201780(n,k). - Philippe Deléham, Dec 05 2011 EXAMPLE 1 + x + 4*x^2 + 12*x^3 + 36*x^4 + 108*x^5 + 324*x^6 + 972*x^7 + 2916*x^8 + ... MATHEMATICA CoefficientList[Series[(1 - x)^2/(1 - 3 x), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *) PROG (PARI) {a(n) = local(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (-4*k + 9) * A[k-1] + 3 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */ CROSSREFS Cf. A025192, A000244, A003462. Sequence in context: A170541 A170589 A170637 A170685 A177881 A290899 A290905 Adjacent sequences:  A052153 A052154 A052155 * A052157 A052158 A052159 KEYWORD easy,nonn AUTHOR Barry E. Williams, Jan 24 2000 EXTENSIONS New name from Joerg Arndt, Jul 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.