The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177025 Number of ways to represent n as a polygonal number. 10
 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 2, 1, 1, 4, 2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 2, 1, 2, 1, 1, 2, 3, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 4, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 3, 1, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,4 COMMENTS Frequency of n in the array A139601 or A086270 of polygonal numbers. Since n is always n-gonal number, a(n) >= 1. Conjecture: Every positive integer appears in the sequence. Records of 2, 3, 4, 5, ... are reached at n = 6, 15, 36, 225, 561, 1225, ... see A063778. [R. J. Mathar, Aug 15 2010] REFERENCES J. J. Tattersall, Elementary Number Theory in Nine chapters, 2nd ed (2005), Cambridge Univ. Press, page 22 Problem 26, citing Wertheim (1897) LINKS T. D. Noe, Table of n, a(n) for n = 3..10000 E. Deza and M. Deza, Figurate Numbers, World Scientific, 2012; see p. 45. FORMULA a(n) = A129654(n) - 1. G.f.: x * Sum_{k>=2} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 09 2020 MAPLE A177025 := proc(p)     local ii, a, n, s, m ;     ii := 2*p ;     a := 0 ;     for n in numtheory[divisors](ii) do         if n > 2 then             s := ii/n ;             if (s-2) mod (n-1) = 0 then                 a := a+1 ;             end if;         end if;     end do:     return a; end proc: # R. J. Mathar, Jan 10 2013 MATHEMATICA nn = 100; t = Table[0, {nn}]; Do[k = 2; While[p = k*((n - 2) k - (n - 4))/2; p <= nn, t[[p]]++; k++], {n, 3, nn}]; t (* T. D. Noe, Apr 13 2011 *) Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]] - 1, {n, 3, 100}] (* Jonathan Sondow, May 09 2014 *) PROG (PARI) a(n) = sum(i=3, n, ispolygonal(n, i)); \\ Michel Marcus, Jul 08 2014 (Python) from sympy import divisors def a(n):     i=2*n     x=0     for d in divisors(i):         if d>2:             s=i/d             if (s - 2)%(d - 1)==0: x+=1     return x # Indranil Ghosh, Apr 28 2017, translated from Maple code by R. J. Mathar CROSSREFS Cf. A129654, A139601, A090428, A176949, A176948, A176774, A176744, A176747, A176775, A175873, A176874. Sequence in context: A154402 A210682 A293433 * A265210 A023396 A091221 Adjacent sequences:  A177022 A177023 A177024 * A177026 A177027 A177028 KEYWORD nonn AUTHOR Vladimir Shevelev, May 01 2010 EXTENSIONS Extended by R. J. Mathar, Aug 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 07:36 EST 2021. Contains 340267 sequences. (Running on oeis4.)