login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139601 Square array T(n,k) = (n+1)*(k-1)*k/2+k, of polygonal numbers, read by antidiagonals. 6
0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 5, 9, 10, 0, 1, 6, 12, 16, 15, 0, 1, 7, 15, 22, 25, 21, 0, 1, 8, 18, 28, 35, 36, 28, 0, 1, 9, 21, 34, 45, 51, 49, 36, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 0, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

A general formula for polygonal numbers is P(n,k) = (n-2)(k-1)k/2 + k, where P(n,k) is the k-th n-gonal number. - Omar E. Pol, Dec 21 2008

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

Peter Luschny, Figurate number — a very short introduction. With plots from Stefan Friedrich Birkner.

Omar E. Pol, Polygonal numbers, An alternative illustration of initial terms.

FORMULA

T(n,k) = A086270(n,k), k>0. - R. J. Mathar, Aug 06 2008

T(n,k) = (n+1)*(k-1)*k/2+k, n>=0, k>=0. - Omar E. Pol, Jan 07 2009

EXAMPLE

The square array of polygonal numbers begins:

========================================================

Triangulars .. A000217: 0, 1,  3,  6, 10,  15,  21,  28,

Squares ...... A000290: 0, 1,  4,  9, 16,  25,  36,  49,

Pentagonals .. A000326: 0, 1,  5, 12, 22,  35,  51,  70,

Hexagonals ... A000384: 0, 1,  6, 15, 28,  45,  66,  91,

Heptagonals .. A000566: 0, 1,  7, 18, 34,  55,  81, 112,

Octagonals ... A000567: 0, 1,  8, 21, 40,  65,  96, 133,

9-gonals ..... A001106: 0, 1,  9, 24, 46,  75, 111, 154,

10-gonals .... A001107: 0, 1, 10, 27, 52,  85, 126, 175,

11-gonals .... A051682: 0, 1, 11, 30, 58,  95, 141, 196,

12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217,

And so on ..............................................

========================================================

MATHEMATICA

T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[ T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten [Robert G. Wilson v, Jul 12 2009]

CROSSREFS

Cf. A000217, A000290, A000326, A000384, A000566, A000567, A001106, A001107, A051682, A051624, A051865, A051866, A051867, A051868, A051869, A051870, A000007, A000012, A000027, A008585, A016957, A017329, A139606, A139607, A139608, A139609, A139610, A139611, A139612, A139613, A139614, A139615, A139616, A057145, A086271, A139600.

Cf. A086270, A139617, A139618, A139619, A139620.

Sequence in context: A250104 A220421 A106683 * A213191 A079520 A229001

Adjacent sequences:  A139598 A139599 A139600 * A139602 A139603 A139604

KEYWORD

nonn,tabl,easy

AUTHOR

Omar E. Pol, Apr 27 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 12:30 EST 2017. Contains 294971 sequences.