The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176948 a(n) is the smallest solution x to A176774(x)=n; a(n)=0 if this equation has no solution. 8
 3, 4, 5, 0, 7, 8, 24, 27, 11, 33, 13, 14, 42, 88, 17, 165, 19, 20, 60, 63, 23, 69, 72, 26, 255, 160, 29, 87, 31, 32, 315, 99, 102, 208, 37, 38, 114, 805, 41, 123, 43, 44, 132, 268, 47, 696, 475, 50, 150, 304, 53, 159, 162, 56, 168, 340, 59, 177, 61, 62, 615, 1309, 192, 388 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS A greedy inverse function to A176774. Conjecture: For every n >= 4, except for n=6, there exists an n-gonal number N which is not k-gonal for 3 <= k < n. This means that the sequence contains only one 0: a(6)=0. For n=6 it is easy to prove that every hexagonal number (A000384) is also triangular (A000217), i.e., N does not exist. - Vladimir Shevelev, Apr 30 2010 LINKS Chai Wah Wu, Table of n, a(n) for n = 3..10000 FORMULA a(p) = p if p is any odd prime. EXAMPLE For n=9, 24 is a nonagonal number, but not an octagonal number, heptagonal number, hexagonal number, etc. The smaller nonagonal number 9 is also a square number. Thus, a(9) = 24. - Michael B. Porter, Jul 16 2016 MAPLE A139601 := proc(k, n) option remember ; n/2*( (k-2)*n-k+4) ; end proc: A176774 := proc(n) option remember ; local k, m, pol ; for k from 3 do for m from 0 do pol := A139601(k, m) ; if pol = n then return k ; elif pol > n then break; end if; end do: end do: end proc: A176948 := proc(n) if n = 6 then 0; else for x from 3 do if A176774(x)= n then return x ; end if; end do: end if; end proc: seq(A176948(n), n=3..80) ; # R. J. Mathar, May 03 2010 MATHEMATICA A176774[n_] := A176774[n] = (m = 3; While[Reduce[k >= 1 && n == k (k (m - 2) - m + 4)/2, k, Integers] == False, m++]; m); a = 0; a[p_?PrimeQ] := p; a[n_] := (x = 3; While[A176774[x] != n, x++]; x); Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 3, 100}] (* Jean-François Alcover, Sep 04 2016 *) CROSSREFS Cf. A176744, A176747, A176775, A175873, A176874. Sequence in context: A246667 A199066 A306584 * A113138 A010263 A011303 Adjacent sequences:  A176945 A176946 A176947 * A176949 A176950 A176951 KEYWORD nonn AUTHOR Vladimir Shevelev, Apr 29 2010 EXTENSIONS More terms from R. J. Mathar, May 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 12:17 EST 2021. Contains 349581 sequences. (Running on oeis4.)