This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129654 Number of different ways to represent n as general polygonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)) = n>1, for m,r>1. 16
 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 4, 3, 2, 3, 2, 2, 4, 3, 2, 3, 3, 2, 3, 4, 2, 3, 2, 2, 3, 3, 3, 5, 2, 2, 3, 3, 2, 3, 2, 2, 5, 3, 2, 3, 3, 2, 4, 3, 2, 3, 4, 2, 3, 3, 2, 3, 2, 2, 3, 4, 3, 5, 2, 2, 3, 4, 2, 3, 2, 2, 4, 3, 2, 4, 2, 2, 5, 3, 2, 3, 3, 2, 3, 3, 2, 3, 4, 3, 3, 3, 3, 4, 2, 2, 3, 4, 2, 3, 2, 2, 5, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS The indices k of the first appearance of number n in a(k) are listed in A063778(n) = {2,3,6,15,36,225,...} = Least number k>1 such that k could be represented in n different ways as general m-gonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)). From Gus Wiseman, May 03 2019: (Start) Also the number of integer partitions of n whose augmented differences are all equal, where the augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k; for example aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Equivalently, a(n) is the number of integer partitions of n whose differences are all equal to the last part minus one. The Heinz numbers of these partitions are given by A307824. For example, the a(35) = 5 partitions are:   (35)   (23,12)   (11,9,7,5,3)   (8,7,6,5,4,3,2)   (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) (End) LINKS Alois P. Heinz, Table of n, a(n) for n = 2..10000 E. Deza and M. Deza, Figurate Numbers, World Scientific, 2012; see p. 45. Eric Weisstein's World of Mathematics, Polygonal Number FORMULA a(n) = A177025(n) + 1. EXAMPLE a(6) = 3 because 6 = P(2,6) = P(3,3) = P(6,2). MAPLE A129654 := proc(n) local resul, dvs, i, r, m ;    dvs := numtheory[divisors](2*n) ;    resul := 0 ;    for i from 1 to nops(dvs) do       r := op(i, dvs) ;       if r > 1 then          m := (2*n/r-4+2*r)/(r-1) ;          if is(m, integer) then             resul := resul+1 ;          fi ;       fi ;    od ;    RETURN(resul) ; end: # R. J. Mathar, May 14 2007 MATHEMATICA a[n_] := (dvs = Divisors[2*n]; resul = 0; For[i = 1, i <= Length[dvs], i++, r = dvs[[i]]; If[r > 1, m = (2*n/r-4+2*r)/(r-1); If[IntegerQ[m], resul = resul+1 ] ] ]; resul); Table[a[n], {n, 2, 106}] (* Jean-François Alcover, Sep 13 2012, translated from R. J. Mathar's Maple program *) Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]], {n, 2, 106}] (* Jonathan Sondow, May 09 2014 *) atpms[n_]:=Select[Join@@Table[i*Range[k, 1, -1], {k, n}, {i, 0, n}], Total[#+1]==n&]; Table[Length[atpms[n]], {n, 100}] (* Gus Wiseman, May 03 2019 *) PROG (PARI) a(n) = sumdiv(2*n, d, (d>1) && (2*n/d + 2*d - 4) % (d-1) == 0); \\ Daniel Suteu, Dec 22 2018 CROSSREFS Cf. A063778, A177025. Column k=0 of A239550. Cf. A007862, A049988, A307824, A325349, A325350, A325356, A325357, A325358, A325458, A325459. Sequence in context: A223942 A278597 A138789 * A116504 A186233 A226056 Adjacent sequences:  A129651 A129652 A129653 * A129655 A129656 A129657 KEYWORD nonn AUTHOR Alexander Adamchuk, Apr 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 23:44 EST 2019. Contains 329945 sequences. (Running on oeis4.)