login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007862 Number of triangular numbers that divide n. 46
1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 3, 1, 1, 2, 2, 1, 5, 1, 1, 2, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 4, 1, 1, 3, 1, 2, 2, 1, 1, 3, 2, 2, 2, 1, 1, 5, 1, 1, 3, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 3, 1, 1, 4, 1, 2, 2, 1, 1, 5, 1, 1, 2, 1, 1, 6, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Also a(n) is the total number of ways to represent n+1 as a centered polygonal number of the form km(m+1)/2+1 for k>1. - Alexander Adamchuk, Apr 26 2007

a(A130317(n)) = n and a(m) <> n for m < A130317(n). - Reinhard Zumkeller, May 23 2007

Number of oblong numbers that divide 2n. - Ray Chandler, Jun 24 2008

The number of divisors d of 2n such that d+1 is also a divisor of 2n, see first formula. - Michel Marcus, Jun 18 2015

From Gus Wiseman, May 03 2019: (Start)

Also the number of integer partitions of n forming a finite arithmetic progression with offset 0, i.e. the differences are all equal (with the last part taken to be 0). The Heinz numbers of these partitions are given by A325327. For example, the a(1) = 1 through a(12) = 3 partitions are (A = 10, B = 11, C = 12):

  1    2    3     4    5    6      7    8    9     A       B     C

            21              42               63    4321          84

                            321                                  642

(End)

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Centered Polygonal Number.

Wikipedia, Arithmetic progression.

Gus Wiseman, Sequences counting and ranking integer partitions by the differences of their successive parts.

FORMULA

a(n) = Sum_{d|2*n,d+1|2*n} 1.

G.f.: Sum_{k>=1} x^A000217(k)/(1-x^A000217(k)). - Jon Perry, Jul 03 2004

a(n) = A129308(2n). - Ray Chandler, Jun 24 2008

a(n) = Sum_{k=1..A000005(n)} A010054(A027750(n,k)). - Reinhard Zumkeller, Jul 05 2014

MATHEMATICA

sup=90; TriN=Array[ (#+1)(#+2)/2&, Floor[ N[ Sqrt[ sup*2 ] ] ]-1 ]; Array[ Function[n, 1+Count[ Map[ Mod[ n, # ]&, TriN ], 0 ] ], sup ]

Table[Count[Divisors[k], _?(IntegerQ[Sqrt[8 # + 1]] &)], {k, 105}] (* Jayanta Basu, Aug 12 2013 *)

Table[Length[Select[IntegerPartitions[n], SameQ@@Differences[Append[#, 0]]&]], {n, 0, 30}] (* Gus Wiseman, May 03 2019 *)

PROG

(Haskell)

a007862 = sum . map a010054 . a027750_row

-- Reinhard Zumkeller, Jul 05 2014

(PARI) a(n) = sumdiv(n, d, ispolygonal(d, 3)); \\ Michel Marcus, Jun 18 2015

CROSSREFS

Cf. A046951.

Cf. A010054, A027750, A000005, A239930.

Cf. A000217, A007294, A049988, A325324, A325327, A325407.

Sequence in context: A275699 A305633 A214123 * A285851 A055169 A205131

Adjacent sequences:  A007859 A007860 A007861 * A007863 A007864 A007865

KEYWORD

nonn

AUTHOR

Richard Stanley

EXTENSIONS

Extended by Ray Chandler, Jun 24 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 18:54 EDT 2019. Contains 328308 sequences. (Running on oeis4.)