login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086270 Rectangular array T(k,n) of polygonal numbers, by antidiagonals. 15
1, 3, 1, 6, 4, 1, 10, 9, 5, 1, 15, 16, 12, 6, 1, 21, 25, 22, 15, 7, 1, 28, 36, 35, 28, 18, 8, 1, 36, 49, 51, 45, 34, 21, 9, 1, 45, 64, 70, 66, 55, 40, 24, 10, 1, 55, 81, 92, 91, 81, 65, 46, 27, 11, 1, 66, 100, 117, 120, 112, 96, 75, 52, 30, 12, 1, 78, 121, 145, 153, 148, 133, 111 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The antidiagonal sums 1, 4, 11, 25, 50, ... are the numbers A006522(n) for n >= 3.

This is the accumulation array (cf. A144112) of A144257 (which is the weight array of this sequence). - Clark Kimberling, Sep 16 2008

By rows, the sequence beginning (1, N, ...) is the binomial transform of (1, (N-1), (N-2), 0, 0, 0, ...); and is the second partial sum of (1, (N-2), (N-2), (N-2), ...). Example: The sequence (1, 4, 9, 16, 25, ...) is the binomial transform of (1, 3, 2, 0, 0, 0, ...) and the second partial sum of (1, 2, 2, 2, ...). - Gary W. Adamson, Aug 23 2015

LINKS

Table of n, a(n) for n=1..73.

Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.

Wikipedia, Polygonal number: Table of values.

FORMULA

T(n, k) = n*binomial(k, 2) + k = A057145(n+2,k).

2*T(n, k) = T(n+r, k) + T(n-r, k), where r = 0, 1, 2, 3, ..., n-1 (see table in Example field). - Bruno Berselli, Dec 19 2014

From Stefano Spezia, Sep 02 2022: (Start)

G.f.: x*y*(1 - x + x*y)/((1 - x)^2*(1 - y)^3).

G.f. of k-th column: k*(1 + k - 2*x)*x/(2*(1 - x)^2). (End)

EXAMPLE

First 6 rows:

=========================================

n\k|  1   2    3    4    5    6     7

---|-------------------------------------

1  |  1   3    6   10   15   21    28 ... (A000217, triangular numbers)

2  |  1   4    9   16   25   36    49 ... (A000290, squares)

3  |  1   5   12   22   35   51    70 ... (A000326, pentagonal numbers)

4  |  1   6   15   28   45   66    91 ... (A000384, hexagonal numbers)

5  |  1   7   18   34   55   81   112 ... (A000566, heptagonal numbers)

6  |  1   8   21   40   65   96   133 ... (A000567, octagonal numbers)

...

The array formed by the complements: A183225.

MATHEMATICA

t[n_, k_] := n*Binomial[k, 2] + k; Table[ t[k, n - k + 1], {n, 12}, {k, n}] // Flatten

PROG

(Magma) T:=func<h, i | h*Binomial(i, 2)+i>; [T(k, n-k+1): k in [1..n], n in [1..12]]; // Bruno Berselli, Dec 19 2014

CROSSREFS

Cf. A006522, A057145, A086271, A086272, A086273, A139601, A183225.

Cf. A000217, A000290, A000326, A000384, A000566, A000567.

Cf. A114112, A144257 .

Sequence in context: A133110 A286158 A185915 * A325000 A104712 A122177

Adjacent sequences:  A086267 A086268 A086269 * A086271 A086272 A086273

KEYWORD

nonn,easy,tabl

AUTHOR

Clark Kimberling, Jul 14 2003

EXTENSIONS

Extended by Clark Kimberling, Jan 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 15:19 EDT 2022. Contains 357226 sequences. (Running on oeis4.)