OFFSET
1,1
COMMENTS
Members of A176541, for which there are only a finite number of solutions.
Integer n is in this sequence if n=2*m^2 and the equation (2*x-m*y)*(2*x+m*y)=A077415(n)/2 has integer solutions with y>=n. - Max Alekseyev, May 10 2010
It seems that a(n) = 2*A001651(n+2)^2. - Colin Barker, Sep 25 2015
FORMULA
Conjectures from Colin Barker, Sep 24 2015: (Start)
a(n) = (9*n^2+24*n+16)/2 for n even.
a(n) = (9*n^2+30*n+25)/2 for n odd.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: -2*x*(4*x^4-3*x^3-8*x^2+9*x+16) / ((x-1)^3*(x+1)^2).
(End)
EXAMPLE
32 is in this sequence because there is only one set of 32 consecutive triangular numbers that sum to a square (namely, A000217(26) thru A000217(57), which sum to 29584 = 172^2).
3 is NOT in this sequence, because there are infinitely many sets of 3 consecutive triangular numbers that sum to a square (cf. A165517).
4 is NOT in this sequence, because there are infinitely many sets of 4 consecutive triangular numbers that sum to a square (cf. A202391).
5 is NOT in this sequence, because there are NO sets of 5 consecutive triangular numbers that sum to a square.
11 is NOT in this sequence, since there are infinitely many sets of 11 consecutive triangular numbers that sum to a square (cf. A116476).
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Weimholt, Apr 20 2010
EXTENSIONS
Terms a(6) onward from Max Alekseyev, May 10 2010
STATUS
approved