This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176544 Primes of the form semiprime(k)/sum of digits of semiprime(k). 0
 7, 37, 19, 67, 19, 19, 37, 37, 73, 37, 73, 337, 367, 163, 73, 109, 127, 73, 109, 163, 127, 181, 163, 433, 181, 163, 199, 181, 271, 163, 199, 199, 271, 271, 397, 307, 307, 487, 379, 541, 433, 577, 397, 271, 631, 433, 379, 487, 919, 1459, 541, 937, 811, 631, 991 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS FORMULA a(n) = p = A001358(n)/A175013(n). a(n) = A001358(A176543(n))/A175013(A176543(n)). - R. J. Mathar, Apr 26 2010 EXAMPLE 7 is a term because 7 = 21/(2+1); 37 is a term because 37 = 111/(1+1+1). MAPLE A175013 := proc(n) A007953(A001358(n)) ; end proc: A007953 := proc(n) add(d, d=convert(n, base, 10)) ; end proc: for n from 1 to 4000 do r := A001358(n)/A175013(n) ; if type(r, 'integer') then if isprime(r) then printf("%d, ", r) ; end if; end if; end do: # R. J. Mathar, Apr 26 2010 CROSSREFS Cf. A001358 (semiprimes), A007953 (sum of digits), A175013, A176543. Sequence in context: A120106 A240274 A129737 * A281994 A246603 A043374 Adjacent sequences:  A176541 A176542 A176543 * A176545 A176546 A176547 KEYWORD nonn,base AUTHOR Juri-Stepan Gerasimov, Apr 20 2010 EXTENSIONS More terms from R. J. Mathar, Apr 26 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 17:42 EST 2019. Contains 329768 sequences. (Running on oeis4.)