

A099048


Number of 5 X n 01 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (11;0).


1



32, 50, 68, 86, 104, 122, 140, 158, 176, 194, 212, 230, 248, 266, 284, 302, 320, 338, 356, 374, 392, 410, 428, 446, 464, 482, 500, 518, 536, 554, 572, 590, 608, 626, 644, 662, 680, 698, 716, 734, 752, 770, 788, 806, 824, 842, 860, 878, 896, 914, 932, 950
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 01 matrices in question is given by (n+1)*2^(m1)+2*(n1).
Also, temperatures in Fahrenheit that convert to Celsius as nonnegative multiples of 10.  J. Lowell, Jul 28 2007


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..5000
Tanya Khovanova, Recursive Sequences
S. Kitaev, On multiavoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
Index entries for linear recurrences with constant coefficients, signature (2,1).


FORMULA

a(n) = 18*n+14.
a(n) = 2*A017245(n).


MATHEMATICA

Table[18n + 14, {n, 52}] (* Robert G. Wilson v, Nov 16 2004 *)


PROG

(MAGMA) [18*n+14: n in [1..60]]; // Vincenzo Librandi, Jul 25 2011


CROSSREFS

Cf. A017245.
Sequence in context: A256521 A037008 A316943 * A176542 A048734 A277870
Adjacent sequences: A099045 A099046 A099047 * A099049 A099050 A099051


KEYWORD

nonn,easy


AUTHOR

Sergey Kitaev, Nov 13 2004


EXTENSIONS

More terms from Robert G. Wilson v, Nov 16 2004


STATUS

approved



