login
A176543
Numbers k such that semiprime(k)/sum of digits of semiprime(k) is prime.
1
7, 36, 44, 63, 68, 79, 128, 148, 157, 192, 244, 303, 323, 335, 410, 421, 475, 483, 535, 606, 616, 669, 776, 849, 862, 868, 947, 964, 986, 1039, 1046, 1256, 1264, 1403, 1406, 1422, 1579, 1700, 1733, 1874, 1971
OFFSET
1,1
FORMULA
A001358(a(n))/A175013(a(n)) is prime.
EXAMPLE
7 is a term because 7 (prime) = 21/3 = semiprime(7)/sum of digits of semiprime(7);
36 is a term because 37 (prime) = 111/3 = semiprime(36)/sum of digits of semiprime(36).
MAPLE
A175013 := proc(n) A007953(A001358(n)) ; end proc: A007953 := proc(n) add(d, d=convert(n, base, 10)) ; end proc: for n from 1 to 2000 do r := A001358(n)/A175013(n) ; if type(r, 'integer') then if isprime(r) then printf("%d, ", n) ; end if; end if; end do: # R. J. Mathar, Apr 26 2010
CROSSREFS
Cf. A001358 (semiprimes), A007953 (sum of digits), A175013.
Sequence in context: A362162 A028389 A041603 * A018199 A063168 A163683
KEYWORD
nonn,base,less
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Apr 26 2010
STATUS
approved