

A165517


Indices of the least triangular numbers (A000217) for which three consecutive triangular numbers sum to a perfect square (A000290).


9



0, 5, 14, 63, 152, 637, 1518, 6319, 15040, 62565, 148894, 619343, 1473912, 6130877, 14590238, 60689439, 144428480, 600763525, 1429694574, 5946945823, 14152517272, 58868694717, 140095478158, 582740001359, 1386802264320
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Those perfect squares that can be expressed as the sum of three consecutive triangular numbers correspond to integer solutions of the equation T(k)+T(k+1)+T(k+2)=s^2, or equivalently to 3k^2 + 9k + 8 = 2s^2. Hence solutions occur whenever (3k^2 + 9k + 8)/2 is a perfect square, or equivalently when s>=2 and sqrt(24s^2  15) is congruent to 3 mod 6. This sequence returns the index of the smallest of the 3 triangular numbers, the values of s^2 are given in A165516 and, with the exception of the first term, the values of s are in A129445.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000
Tom Beldon and Tony Gardiner, Triangular Numbers and Perfect Squares, The Mathematical Gazette, Vol. 86, No. 507, (2002), pp. 423431.
Index entries for linear recurrences with constant coefficients, signature (1,10,10,1,1).


FORMULA

a(n) = a(n1) + 10*a(n2)  10*a(n3)  a(n4) + a(n5).
G.f.: x(x^3 + x^2  9x  5)/((x1)(x^4  10x^2 + 1)).
a(n) = 10*a(n2)  a(n4) + 12.  Zak Seidov, Sep 25 2009


EXAMPLE

The fourth perfect square that can be expressed as the sum of three consecutive triangular numbers is 6241 = T(63) + T(64) + T(65). Hence a(4)=63.


MATHEMATICA

TriangularNumber[ n_ ]:=1/2 n (n+1); Select[ Range[ 0, 10^7 ], IntegerQ[ Sqrt[ TriangularNumber[ # ]+TriangularNumber[ #+1 ]+TriangularNumber[ #+2 ] ] ] & ]
CoefficientList[Series[x*(x^3 + x^2  9*x  5)/((x  1)*(x^4  10*x^2 + 1)), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 10, 10, 1, 1}, {0, 5, 14, 63, 152}, 50] (* G. C. Greubel, Feb 17 2017 *)


PROG

(PARI) x='x+O('x^50); concat([0], Vec(x*(x^3 + x^2  9*x  5)/((x  1)*(x^4  10*x^2 + 1)))) \\ G. C. Greubel, Feb 17 2017
(MAGMA) I:=[0, 5, 14, 63, 152]; [n le 5 select I[n] else Self(n1) + 10*Self(n2)  10*Self(n3)  Self(n4) + Self(n5): n in [1..50]]; // G. C. Greubel, Oct 21 2018


CROSSREFS

Cf. A000290, A129445, A000217, A165516.
Sequence in context: A279511 A281698 A268814 * A197788 A197661 A004030
Adjacent sequences: A165514 A165515 A165516 * A165518 A165519 A165520


KEYWORD

easy,nonn


AUTHOR

Ant King, Sep 25 2009, Oct 01 2009


EXTENSIONS

a(1) = 0 added by N. J. A. Sloane, Sep 28 2009, at the suggestion of Alexander R. Povolotsky
More terms from Zak Seidov, Sep 25 2009


STATUS

approved



