login
A128676
Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the m-th alternating generalized harmonic number H'(m,k), for k = 6.
7
20, 100, 110, 156, 161, 272, 342, 345, 500, 506, 812, 930, 1210, 1332, 1640, 1806, 2028, 2162, 2500, 2756, 3051, 3422, 3660, 3703, 4422, 4624, 4970, 5256, 6162, 6498, 6806, 7832, 7935, 9312, 9605, 10100, 10506, 11342, 11638, 11772, 12500, 12656, 13310
OFFSET
1,1
COMMENTS
Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Sequence contains all terms of geometric progressions of the form (p-1)*p^k, k > 0, for some primes p >= 5, such as 4*5^k, 7*23^k, 15*23^k, 27*113^k, etc. Note the factorization of initial terms of {a(n)} = {4*5, 4*5^2, 10*11, 12*13, 7*23, 16*17, 18*19, 15*23, 4*5^3, 22*23, 28*29, 30*31, 10*11^2, 36*37, 40*41, 42*43, 12*13^2, 46*47, 4*5^4, 52*53, 27*113, 58*59, 60*61, 7*23^2, ...}. See more details in Comments at A128672 and A125581.
LINKS
Eric Weisstein's World of Mathematics, Harmonic Number
MATHEMATICA
k=6; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n, 1, 3703} ]
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Mar 20 2007
EXTENSIONS
Edited and extended by Max Alekseyev, May 08 2010
STATUS
approved