login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001008 Numerators of harmonic numbers H(n) = Sum_{i=1..n} 1/i.
(Formerly M2885 N1157)
436
1, 3, 11, 25, 137, 49, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 14274301, 275295799, 55835135, 18858053, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003, 315404588903, 9227046511387 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
H(n)/2 is the maximal distance that a stack of n cards can project beyond the edge of a table without toppling.
By Wolstenholme's theorem, p^2 divides a(p-1) for all primes p > 3.
From Alexander Adamchuk, Dec 11 2006: (Start)
p divides a(p^2-1) for all primes p > 3.
p divides a((p-1)/2) for primes p in A001220.
p divides a((p+1)/2) or a((p-3)/2) for primes p in A125854.
a(n) is prime for n in A056903. Corresponding primes are given by A067657. (End)
a(n+1) is the numerator of the polynomial A[1, n](1) where the polynomial A[genus 1, level n](m) is defined to be Sum_{d = 1..n - 1} m^(n - d)/d. (See the Mathematica procedure generating A[1, n](m) below.) - Artur Jasinski, Oct 16 2008
Better solutions to the card stacking problem have been found by M. Paterson and U. Zwick (see link). - Hugo Pfoertner, Jan 01 2012
a(n) = A213999(n, n-1). - Reinhard Zumkeller, Jul 03 2012
a(n) coincides with A175441(n) if and only if n is not from the sequence A256102. The quotient a(n) / A175441(n) for n in A256102 is given as corresponding entry of A256103. - Wolfdieter Lang, Apr 23 2015
For a very short proof that the Harmonic series diverges, see the Goldmakher link. - N. J. A. Sloane, Nov 09 2015
All terms are odd while corresponding denominators (A002805) are all even for n > 1 (proof in Pólya and Szegő). - Bernard Schott, Dec 24 2021
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 259.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 347.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 615.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, volume II, Springer, reprint of the 1976 edition, 1998, problem 251, p. 154.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Kenny Lau, Table of n, a(n) for n = 1..2295 (first 200 terms provided by T. D. Noe)
David H. Bailey, Jonathan M. Borwein, and Roland Girgensohn, Experimental evaluation of Euler sums, Exper. Math. 3(1) (1994), 17-30; they evaluate the constants Sum_{k>=1} H_k^m/(k+1)^n.
Hongwei Chen, Evaluations of Some Variant Euler Sums, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.3.
Antal Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013), 54-82.
Fredrik Johansson, How (not) to compute harmonic numbers. Feb 21 2009.
Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
Mike Paterson et al., Maximum Overhang.
Maxie D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications, J. Int. Seq. 13 (2010), 10.6.7, Section 4.3.
Peter Shiu, The denominators of harmonic numbers, arXiv:1607.02863 [math.NT], 2016.
Jonathan Sondow and Eric W. Weisstein, MathWorld: Harmonic Number.
Wikipedia, Harmonic number.
FORMULA
H(n) ~ log n + gamma + O(1/n). [See Hardy and Wright, Th. 422.]
log n + gamma - 1/n < H(n) < log n + gamma + 1/n [follows easily from Hardy and Wright, Th. 422]. - David Applegate and N. J. A. Sloane, Oct 14 2008
G.f. for H(n): log(1-x)/(x-1). - Benoit Cloitre, Jun 15 2003
H(n) = sqrt(Sum_{i = 1..n} Sum_{j = 1..n} 1/(i*j)). - Alexander Adamchuk, Oct 24 2004
a(n) is the numerator of Gamma/n + Psi(1 + n)/n = Gamma + Psi(n), where Psi is the digamma function. - Artur Jasinski, Nov 02 2008
H(n) = 3/2 + 2*Sum_{k = 0..n-3} binomial(k+2, 2)/((n-2-k)*(n-1)*n), n > 1. - Gary Detlefs, Aug 02 2011
H(n) = (-1)^(n-1)*(n+1)*n*Sum_{k = 0..n-1} k!*Stirling2(n-1, k) * Stirling1(n+k+1,n+1)/(n+k+1)!. - Vladimir Kruchinin, Feb 05 2013
H(n) = n*Sum_{k = 0..n-1} (-1)^k*binomial(n-1,k)/(k+1)^2. (Wenchang Chu) - Gary Detlefs, Apr 13 2013
H(n) = (1/2)*Sum_{k = 1..n} (-1)^(k-1)*binomial(n,k)*binomial(n+k, k)/k. (H. W. Gould) - Gary Detlefs, Apr 13 2013
E.g.f. for H(n) = a(n)/A002805(n): (gamma + log(x) - Ei(-x)) * exp(x), where gamma is the Euler-Mascheroni constant, and Ei(x) is the exponential integral. - Vladimir Reshetnikov, Apr 24 2013
H(n) = residue((psi(-s)+gamma)^2/2, {s, n}) where psi is the digamma function and gamma is the Euler-Mascheroni constant. - Jean-François Alcover, Feb 19 2014
H(n) = Sum_{m >= 1} n/(m^2 + n*m) = gamma + digamma(1+n), numerators and denominators. (see Mathworld link on Digamma). - Richard R. Forberg, Jan 18 2015
H(n) = (1/2) Sum_{j >= 1} Sum_{k = 1..n} ((1 - 2*k + 2*n)/((-1 + k + j*n)*(k + j*n))) + log(n) + 1/(2*n). - Dimitri Papadopoulos, Jan 13 2016
H(n) = (n!)^2*Sum_{k = 1..n} 1/(k*(n-k)!*(n+k)!). - Vladimir Kruchinin, Mar 31 2016
a(n) = Stirling1(n+1, 2) / gcd(Stirling1(n+1, 2), n!) = A000254(n) / gcd(A000254(n), n!). - Max Alekseyev, Mar 01 2018
From Peter Bala, Jan 31 2019: (Start)
H(n) = 1 + (1 + 1/2)*(n-1)/(n+1) + (1/2 + 1/3)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/3 + 1/4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... .
H(n)/n = 1 + (1/2^2 - 1)*(n-1)/(n+1) + (1/3^2 - 1/2^2)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/4^2 - 1/3^2)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... .
For odd n >= 3, (1/2)*H((n-1)/2) = (n-1)/(n+1) + (1/2)*(n-1)*(n-3)/((n+1)*(n+3)) + 1/3*(n-1)*(n-3)*(n-5)/((n+1)*(n+3)*(n+5)) + ... . Cf. A195505. See the Bala link in A036970. (End)
H(n) = ((n-1)/2) * hypergeom([1,1,2-n], [2,3], 1) + 1. - Artur Jasinski, Jan 08 2021
Conjecture: for nonzero m, H(n) = (1/m)*Sum_{k = 1..n} ((-1)^(k+1)/k) * binomial(m*k,k)*binomial(n+(m-1)*k,n-k). The case m = 1 is well-known; the case m = 2 is given above by Detlefs (dated Apr 13 2013). - Peter Bala, Mar 04 2022
a(n) = the (reduced) numerator of the continued fraction 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n-1)^2/(2*n-1))))). - Peter Bala, Feb 18 2024
EXAMPLE
H(n) = [ 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, ... ].
Coincidences with A175441: the first 19 entries coincide because 20 is the first entry of A256102. Indeed, a(20)/A175441(20) = 55835135 / 11167027 = 5 = A256103(1). - Wolfdieter Lang, Apr 23 2015
MAPLE
A001008 := proc(n)
add(1/k, k=1..n) ;
numer(%) ;
end proc:
seq( A001008(n), n=1..40) ; # Zerinvary Lajos, Mar 28 2007; R. J. Mathar, Dec 02 2016
MATHEMATICA
Table[Numerator[HarmonicNumber[n]], {n, 30}]
(* Procedure generating A[1, n](m) (see Comments section) *) m =1; aa = {}; Do[k = 0; Do[k = k + m^(r - d)/d, {d, 1, r - 1}]; AppendTo[aa, k], {r, 1, 20}]; aa (* Artur Jasinski, Oct 16 2008 *)
Numerator[Accumulate[1/Range[25]]] (* Alonso del Arte, Nov 21 2018 *)
Numerator[Table[((n - 1)/2)*HypergeometricPFQ[{1, 1, 2 - n}, {2, 3}, 1] + 1, {n, 1, 29}]] (* Artur Jasinski, Jan 08 2021 *)
PROG
(PARI) A001008(n) = numerator(sum(i=1, n, 1/i)) \\ Michael B. Porter, Dec 08 2009
(PARI) H1008=List(1); A001008(n)={for(k=#H1008, n-1, listput(H1008, H1008[k]+1/(k+1))); numerator(H1008[n])} \\ about 100x faster for n=1..1500. - M. F. Hasler, Jul 03 2019
(Haskell)
import Data.Ratio ((%), numerator)
a001008 = numerator . sum . map (1 %) . enumFromTo 1
a001008_list = map numerator $ scanl1 (+) $ map (1 %) [1..]
-- Reinhard Zumkeller, Jul 03 2012
(Sage)
def harmonic(a, b): # See the F. Johansson link.
if b - a == 1:
return 1, a
m = (a+b)//2
p, q = harmonic(a, m)
r, s = harmonic(m, b)
return p*s+q*r, q*s
def A001008(n): H = harmonic(1, n+1); return numerator(H[0]/H[1])
[A001008(n) for n in (1..29)] # Peter Luschny, Sep 01 2012
(Magma) [Numerator(HarmonicNumber(n)): n in [1..30]]; // Bruno Berselli, Feb 17 2016
(Python)
from sympy import Integer
[sum(1/Integer(i) for i in range(1, n + 1)).numerator() for n in range(1, 31)] # Indranil Ghosh, Mar 23 2017
(GAP) List([1..30], n->NumeratorRat(Sum([1..n], i->1/i))); # Muniru A Asiru, Dec 20 2018
CROSSREFS
Cf. A145609-A145640. - Artur Jasinski, Oct 16 2008
Cf. A003506. - Paul Curtz, Nov 30 2013
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.
Cf. A195505.
Sequence in context: A060746 A111935 A175441 * A231606 A096617 A025529
KEYWORD
nonn,frac,nice,easy
AUTHOR
EXTENSIONS
Edited by Max Alekseyev, Oct 21 2011
Changed title, deleting the incorrect name "Wolstenholme numbers" which conflicted with the definition of the latter in both Weisstein's World of Mathematics and in Wikipedia, as well as with OEIS A007406. - Stanislav Sykora, Mar 25 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 06:05 EDT 2024. Contains 370952 sequences. (Running on oeis4.)