|
|
A058313
|
|
Numerator of the n-th alternating harmonic number, Sum_{k=1..n} (-1)^(k+1)/k.
|
|
49
|
|
|
1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 33464927, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 7751493599, 236266661971
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
A Wolstenholme-like theorem: for prime p > 3, if p = 6k-1, then p divides a(4k-1), otherwise if p = 6k+1, then p divides a(4k). - T. D. Noe, Apr 01 2004
For the limit n -> infinity of the partial sums of the alternating harmonic series see A002162. - Wolfdieter Lang, Sep 08 2015
|
|
LINKS
|
T. D. Noe and Robert Israel, Table of n, a(n) for n = 1..2000 (terms up to a(200) from T. D. Noe)
Hisanori Mishima, Factorizations of many number sequences
Hisanori Mishima, Factorizations of many number sequences
Eric Weisstein's World of Mathematics, Harmonic Number
|
|
FORMULA
|
G.f. for A058313(n)/ A058312(n): log(1+x)/(1-x). - Benoit Cloitre, Jun 15 2003
a(n) = (n*a(n-1) + (-1)^(n+1)*A058312(n-1))/gcd(n*a(n-1) + (-1)^(n+1)*A058312(n-1), n*A058312(n-1)). - Robert Israel, Jul 06 2015
From Peter Luschny, May 03 2016: (Start)
Let H(n) denote the harmonic numbers, AH(n) denote the alternating harmonic numbers, Psi the polygamma function and euler(n,x) the Euler polynomials. Then:
AH(n) = H(n) - H((n - n mod 2)/2).
AH(z) = log(2)+(1/2)*cos(Pi*z)*(Psi(z/2+1/2)-Psi(z/2+1)).
AH(z) ~ log(2)+(1/2)*cos(Pi*z)*(-1/z+1/(2*z^2)-1/(4*z^4)+1/(2*z^6)-...).
AH(z) ~ log(2)-(1/2)*cos(Pi*z)*Sum_{n>=0} euler(n,0)/z^(n+1). (End)
|
|
EXAMPLE
|
1, 1/2, 5/6, 7/12, 47/60, 37/60, 319/420, 533/840, 1879/2520, ...
|
|
MAPLE
|
A058313 := n->numer(add((-1)^(k+1)/k, k=1..n));
# Alternatively:
a := n -> numer(harmonic(n) - harmonic((n-modp(n, 2))/2)):
seq(a(n), n=1..29); # Peter Luschny, May 03 2016
|
|
MATHEMATICA
|
Numerator[Table[Sum[(-1)^(k+1)/k, {k, n}], {n, 30}]] (* Harvey P. Dale, Jul 18 2012 *)
a[n_]:= (-1)^n(HarmonicNumber[n/2-1/2]-HarmonicNumber[n/2]+(-1)^n Log[4])/2; Table[a[n] // FullSimplify, {n, 1, 29}] // Numerator (* Gerry Martens, Jul 05 2015 *)
Rest[Numerator[CoefficientList[Series[Log[1 + x]/(1 - x), {x, 0, 33}], x]]] (* Vincenzo Librandi, Jul 06 2015 *)
|
|
PROG
|
(PARI) a(n)=(-1)^n*numerator(polcoeff(log(1-x)/(x+1)+O(x^(n+1)), n))
(Haskell)
import Data.Ratio((%), numerator)
a058313 n = a058313_list !! (n-1)
a058313_list = map numerator $ scanl1 (+) $ map (1 %) $ tail a181983_list
-- Reinhard Zumkeller, Mar 20 2013
|
|
CROSSREFS
|
Denominators are A058312. Cf. A025530.
Apart from leading term, same as A075830.
Cf. A001008 (numerator of n-th harmonic number).
Bisections are A049281 and A082687.
Cf. A181983.
Sequence in context: A174267 A306649 A075830 * A120301 A119787 A025530
Adjacent sequences: A058310 A058311 A058312 * A058314 A058315 A058316
|
|
KEYWORD
|
nonn,frac,nice,easy
|
|
AUTHOR
|
N. J. A. Sloane, Dec 09 2000
|
|
STATUS
|
approved
|
|
|
|