The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058313 Numerator of the n-th alternating harmonic number, Sum_{k=1..n} (-1)^(k+1)/k. 49
 1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 33464927, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 7751493599, 236266661971 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A Wolstenholme-like theorem: for prime p > 3, if p = 6k-1, then p divides a(4k-1), otherwise if p = 6k+1, then p divides a(4k). - T. D. Noe, Apr 01 2004 For the limit n -> infinity of the partial sums of the alternating harmonic series see A002162. - Wolfdieter Lang, Sep 08 2015 LINKS T. D. Noe and Robert Israel, Table of n, a(n) for n = 1..2000 (terms up to a(200) from T. D. Noe) Hisanori Mishima, Factorizations of many number sequences Hisanori Mishima, Factorizations of many number sequences Eric Weisstein's World of Mathematics, Harmonic Number FORMULA G.f. for A058313(n)/ A058312(n): log(1+x)/(1-x). - Benoit Cloitre, Jun 15 2003 a(n) = (n*a(n-1) + (-1)^(n+1)*A058312(n-1))/gcd(n*a(n-1) + (-1)^(n+1)*A058312(n-1), n*A058312(n-1)). - Robert Israel, Jul 06 2015 From Peter Luschny, May 03 2016: (Start) Let H(n) denote the harmonic numbers, AH(n) denote the alternating harmonic numbers, Psi the polygamma function and euler(n,x) the Euler polynomials. Then: AH(n) = H(n) - H((n - n mod 2)/2). AH(z) = log(2)+(1/2)*cos(Pi*z)*(Psi(z/2+1/2)-Psi(z/2+1)). AH(z) ~ log(2)+(1/2)*cos(Pi*z)*(-1/z+1/(2*z^2)-1/(4*z^4)+1/(2*z^6)-...). AH(z) ~ log(2)-(1/2)*cos(Pi*z)*Sum_{n>=0} euler(n,0)/z^(n+1). (End) EXAMPLE 1, 1/2, 5/6, 7/12, 47/60, 37/60, 319/420, 533/840, 1879/2520, ... MAPLE A058313 := n->numer(add((-1)^(k+1)/k, k=1..n)); # Alternatively: a := n -> numer(harmonic(n) - harmonic((n-modp(n, 2))/2)): seq(a(n), n=1..29); # Peter Luschny, May 03 2016 MATHEMATICA Numerator[Table[Sum[(-1)^(k+1)/k, {k, n}], {n, 30}]] (* Harvey P. Dale, Jul 18 2012 *) a[n_]:= (-1)^n(HarmonicNumber[n/2-1/2]-HarmonicNumber[n/2]+(-1)^n Log[4])/2; Table[a[n] // FullSimplify, {n, 1, 29}] // Numerator (* Gerry Martens, Jul 05 2015 *) Rest[Numerator[CoefficientList[Series[Log[1 + x]/(1 - x), {x, 0, 33}], x]]] (* Vincenzo Librandi, Jul 06 2015 *) PROG (PARI) a(n)=(-1)^n*numerator(polcoeff(log(1-x)/(x+1)+O(x^(n+1)), n)) (Haskell) import Data.Ratio((%), numerator) a058313 n = a058313_list !! (n-1) a058313_list = map numerator \$ scanl1 (+) \$ map (1 %) \$ tail a181983_list -- Reinhard Zumkeller, Mar 20 2013 CROSSREFS Denominators are A058312. Cf. A025530. Apart from leading term, same as A075830. Cf. A001008 (numerator of n-th harmonic number). Bisections are A049281 and A082687. Cf. A181983. Sequence in context: A174267 A306649 A075830 * A120301 A119787 A025530 Adjacent sequences:  A058310 A058311 A058312 * A058314 A058315 A058316 KEYWORD nonn,frac,nice,easy AUTHOR N. J. A. Sloane, Dec 09 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 14:42 EDT 2021. Contains 343154 sequences. (Running on oeis4.)