OFFSET
1,1
COMMENTS
Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
LINKS
Eric Weisstein's World of Mathematics, Harmonic Number
MATHEMATICA
k=5; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n, 1, 2000} ]
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Alexander Adamchuk, Mar 20 2007
EXTENSIONS
Eight more terms from Max Alekseyev, May 08 2010
STATUS
approved