login
A200470
Number of 0..n arrays x(0..5) of 6 elements with each no smaller than the sum of its four previous neighbors modulo (n+1)
1
20, 98, 455, 1213, 3328, 7140, 15446, 28023, 51356, 85228, 141665, 217763, 335496, 489964, 716380, 1000977, 1400376, 1894984, 2565347, 3373769, 4439204, 5709980, 7346722, 9262315, 11681488, 14491782, 17981005, 21979651, 26872568, 32446832
OFFSET
1,1
COMMENTS
Row 6 of A200469
LINKS
FORMULA
Empirical: a(n) = a(n-2) +a(n-4) -a(n-6) +3*a(n-8) -3*a(n-10) -3*a(n-12) +3*a(n-14) +2*a(n-15) -3*a(n-16) -2*a(n-17) +3*a(n-18) -2*a(n-19) +3*a(n-20) +2*a(n-21) -3*a(n-22) -6*a(n-23) +a(n-24) +6*a(n-25) -a(n-26) +6*a(n-27) -a(n-28) -6*a(n-29) +6*a(n-31) +a(n-32) -6*a(n-33) +a(n-34) -6*a(n-35) -a(n-36) +6*a(n-37) +3*a(n-38) -2*a(n-39) -3*a(n-40) +2*a(n-41) -3*a(n-42) +2*a(n-43) +3*a(n-44) -2*a(n-45) -3*a(n-46) +3*a(n-48) +3*a(n-50) -3*a(n-52) +a(n-54) -a(n-56) -a(n-58) +a(n-60)
EXAMPLE
Some solutions for n=6
..4....2....0....0....2....4....4....0....3....3....0....6....3....0....4....0
..4....3....0....2....2....5....6....1....5....5....2....6....5....0....6....2
..3....5....0....2....4....5....6....3....3....1....5....6....3....2....4....6
..5....5....3....4....5....5....5....4....4....3....1....4....5....2....3....2
..2....1....5....1....6....5....5....6....5....5....6....6....5....4....3....5
..0....5....2....5....3....6....4....2....3....5....6....6....6....6....5....4
CROSSREFS
Sequence in context: A039610 A177498 A157429 * A128676 A039455 A294112
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 18 2011
STATUS
approved