This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099828 Numerator of generalized harmonic number H(n,5). 23
 1, 33, 8051, 257875, 806108207, 268736069, 4516906311683, 144545256245731, 105375212839937899, 105376229094957931, 16971048697474072945481, 16971114472329088045481, 6301272372663207205033976933 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS H(n,5) = Sum{1/k^5), k = 1..n. a(n) is prime for n = {23, 25, 85, 147, 167, ...}. There is a Wolstenholme-like theorem: p divides a(p-1) for prime p. p^2 divides a(p-1) for prime p>7. p^3 divides a(p-1) for prime p = 5. p divides a((p-1)/2) for prime p = 37. p divides a((p-1)/3) for prime p = 37. p divides a((p-1)/4) for prime p = 37. p divides a((p-1)/5) for prime p = 11. p^2 divides a((p-1)/6) for prime p = 37. p divides a((p+1)/4) for prime p = 83. p divides a((p+1)/5) for prime p = 29. p divides a((p+1)/6) for prime p = 11. - Alexander Adamchuk, Nov 07 2006 See the Wolfdieter Lang link under A103345 on Zeta(k, n) = H(n, k) with the rationals for k=1..10, g.f.s and polygamma formulas. - Wolfdieter Lang, Dec 03 2013 LINKS Alexander Adamchuk, Nov 07 2006, Table of n, a(n) for n = 1..100 Eric Weisstein, The World of Mathematics: Wolstenholme's Theorem. FORMULA a(n) = Numerator[Sum[1/k^5, {k, 1, n}]] a(n) = Numerator[HarmonicNumber[n, 5]] EXAMPLE a(2) = 1 + 1/2^5 = 33/32, a(3) = 1 + 1/2^5 + 1/3^5 = 8051/7776. H(n,5) = {1, 33/32, 8051/7776, 257875/248832, ... }. Thus a(2) = Numerator[1 + 1/2^5] = Numerator[33/32] = 33, a(3) = Numerator[1 + 1/2^5 + 1/3^5] = Numerator[8051/7776] = 8051. MATHEMATICA Numerator[Table[Sum[1/k^5, {k, 1, n}], {n, 1, 20}]] or Numerator[Table[HarmonicNumber[n, 5], {n, 1, 20}]] Table[Numerator[Sum[1/k^5, {k, 1, n}]], {n, 1, 100}] - Alexander Adamchuk, Nov 07 2006 CROSSREFS Denominators are A069052. A099827 = H(n,5) multiplied by (n!)^5. Cf. A001008, A007406, A007408, A007410. Sequence in context: A057981 A219563 A183237 * A099827 A269793 A060705 Adjacent sequences:  A099825 A099826 A099827 * A099829 A099830 A099831 KEYWORD nonn,frac AUTHOR Alexander Adamchuk, Oct 27 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 23 21:46 EST 2017. Contains 295141 sequences.