This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007410 Numerator of Sum k^(-4); k = 1..n. (Formerly M5050) 33
 1, 17, 1393, 22369, 14001361, 14011361, 33654237761, 538589354801, 43631884298881, 43635917056897, 638913789210188977, 638942263173398977, 18249420414596570742097, 18249859383918836502097, 18250192489014819937873 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS p divides a(p-1) for prime p>5. p divides a((p-1)/2) for prime p>5. p^2 divides a((p-1)/2) for prime p=31,37. - Alexander Adamchuk, Jul 07 2006 p^2 divides a(p-1) for prime p = 37. - Alexander Adamchuk, Nov 07 2006 Denominators are A007480. See the W. Lang link under A103345 for the rationals and more. The limit of the rationals Zeta(n):=Sum[1/k^4,{k,1,n}] for n->infinity is (Pi^4)/90 which is approximately 1.082323234. REFERENCES D. Y. Savio, E. A. Lamagna and S.-M. Liu, Summation of harmonic numbers, pp. 12-20 of E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=1..200 Hisanori Mishima, Factorizations of many number sequences Hisanori Mishima, Factorizations of many number sequences FORMULA Numerators of coefficients in expansion of PolyLog(4, x)/(1 - x). - Ilya Gutkovskiy, Apr 10 2017 MATHEMATICA Numerator[Table[Sum[1/k^4, {k, 1, n}], {n, 1, 20}]] - Alexander Adamchuk, Jul 07 2006 PROG (PARI) a(n)=numerator(sum(k=1, n, 1/k^4)) \\ Charles R Greathouse IV, Jul 19 2011 CROSSREFS Cf. A001008, A007406, A007408, A007480. Sequence in context: A067409 A219562 A183236 * A203229 A269791 A256020 Adjacent sequences:  A007407 A007408 A007409 * A007411 A007412 A007413 KEYWORD nonn,frac AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.