This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122367 Dimension of 3-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 3 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i != j). 34
 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418, 514229, 1346269, 3524578, 9227465, 24157817, 63245986, 165580141, 433494437, 1134903170, 2971215073, 7778742049, 20365011074, 53316291173, 139583862445, 365435296162, 956722026041 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Essentially identical to A001519. From Matthew Lehman, Jun 14 2008: (Start) Number of monotonic rhythms using n time intervals of equal duration (starting with n=0). Representationally, let 0 be an interval which is "off" (rest), 1 an interval which is "on" (beep), 1 1 two consecutive "on" intervals (beep, beep), 1 0 1 (beep, rest, beep) and 1-1 two connected consecutive "on" intervals (beeeep). For f(3)=13: 0 0 0, 0 0 1, 0 1 0, 0 1 1, 0 1-1, 1 0 0, 1 0 1, 1 1 0, 1-1 0, 1 1 1, 1 1-1, 1-1 1, 1-1-1. (End) Equivalent to the number of one-dimensional graphs of n nodes, subject to the condition that a node is either 'on' or 'off' and that any two neighboring 'on' nodes can be connected. - Matthew Lehman, Nov 22 2008 Sum_{n>=0} arctan(1/a(n)) = Pi/2. - Jaume Oliver Lafont, Feb 27 2009 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (ii)). P. Barry, A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2, Example 13. N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math/0502082 [math.CO], 2005; Canad. J. Math. 60 (2008), no. 2, 266-296 C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782. I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5. Tanya Khovanova, Recursive Sequences Ron Knott, Pi and the Fibonacci numbers. - Jaume Oliver Lafont, Feb 27 2009 Diego Marques and Alain Togbé, On the sum of powers of two consecutive Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci., Volume 86, Number 10 (2010), 174-176. M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637. Index entries for linear recurrences with constant coefficients, signature (3,-1). FORMULA G.f.: (1-q)/(1-3*q+q^2). More generally, (Sum_{d=0..n} (n!/(n-d)!*q^d)/Product_{r=1..d} (1 - r*q)) / (Sum_{d=0..n} q^d/Product_{r=1..d} (1 - r*q)) where n=3. a(n) = 3*a(n-1) - a(n-2) with a(0) = 1, a(1) = 2. a(n) = Fibonacci(2n+1) = A000045(2n+1). - Philippe Deléham, Feb 11 2009 a(n) = (2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5)) + (1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5). - Colin Barker, Oct 14 2015 a(n) = Sum_{k=0..n} Sum_{i=0..n} binomial(k+i-1, k-i). - Wesley Ivan Hurt, Sep 21 2017 a(n) = A048575(n-1) for n >= 1. - Georg Fischer, Nov 02 2018 a(n) = Fibonacci(n)^2 + Fibonacci(n+1)^2. - Michel Marcus, Mar 18 2019 EXAMPLE a(1) = 2 because x1-x2, x1-x3 are both of degree 1 and are killed by the differential operator d_x1 + d_x2 + d_x3. a(2) = 5 because x1*x2 - x3*x2, x1*x3 - x2*x3, x2*x1 - x3*x1, x1*x1 - x2*x1 - x2*x2 + x1*x2, x1*x1 - x3*x1 - x3*x3 + x3*x1 are all linearly independent and are killed by d_x1 + d_x2 + d_x3, d_x1 d_x1 + d_x2 d_x2 + d_x3 d_x3 and Sum_{j = 1..3} (d_xi d_xj, i). MAPLE a:=n->if n=0 then 1; elif n=1 then 2 else 3*a(n-1)-a(n-2); fi; MATHEMATICA Table[Fibonacci[2 n + 1], {n, 0, 30}] (* Vincenzo Librandi, Jul 04 2015 *) PROG (MAGMA) [Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jul 04 2015 (PARI) Vec((1-x)/(1-3*x+x^2) + O(x^50)) \\ Michel Marcus, Jul 04 2015 CROSSREFS Cf. A001519, A048575, A055105, A055107, A087903, A074664, A008277, A112340, A122368, A122369, A122370, A122371, A122372. Cf. similar sequences listed in A238379. Sequence in context: A001519 A048575 A099496 * A114299 A112842 A097417 Adjacent sequences:  A122364 A122365 A122366 * A122368 A122369 A122370 KEYWORD nonn,easy AUTHOR Mike Zabrocki, Aug 30 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 02:23 EDT 2019. Contains 328135 sequences. (Running on oeis4.)