This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112340 Triangle read by rows of numbers b_{n,k}, n>=1, 1<=k<=n such that Product_{n,k} 1/(1-q^n t^k)^{b_{n,k}} = 1 + Sum_{i,j>=1} S_{i,j} q^i t^j where S_{i,j} are entries in the table A008277 (the inverse Euler transformation of the table of Stirling numbers of the second kind). 7
 1, 1, 0, 1, 2, 0, 1, 5, 3, 0, 1, 13, 16, 4, 0, 1, 28, 67, 34, 5, 0, 1, 60, 249, 229, 65, 6, 0, 1, 123, 853, 1265, 609, 107, 7, 0, 1, 251, 2787, 6325, 4696, 1376, 168, 8, 0, 1, 506, 8840, 29484, 31947, 14068, 2772, 244, 9, 0, 1, 1018, 27503, 131402, 199766, 124859, 36252 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums equal to A085686, second column = A084174 - 1 The number of set partitions of size n length k which are 'Lyndon,' that is, since all set partitions are isomorphic to sequences of atomic set partitions (A087903), those which are smallest of all rotations of these sequences in lex order (with respect to some ordering on the atomic set partitions) are Lyndon. 1; 1, 0; 1, 2, 0; 1, 5, 3, 0; 1, 13, 16, 4, 0; LINKS N. Bergeron, M. Zabrocki, The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree, arXiv:math/0509265 [math.CO], 2005. M. Rosas and B. Sagan, Symmetric Functions in Noncommuting Variables, Transactions of the American Mathematical Society, 358 (2006), no. 1, 215-232. M. C. Wolf, Symmetric functions for non-commutative elements, Duke Math. J., 2 (1936), 626-637. EXAMPLE There are 6 set partitions of size 4 and length 3, {12|3|4}, {13|2|4}, {14|2|3}, {1|23|4}, {1|24|3}, {1|2|34} and the sequences the correspond to are ({12},{1},{1}), ({13|2}, {1}), ({14|2|3}), ({1},{12},{1}), ({1},{13|2}), ({1},{1},{12}). Now there are three {({12},{1},{1}), ({1},{12},{1}), ({1},{1},{12})} that are rotations of each other and ({1}, {1}, {12}) is the smallest of these, {({13|2}, {1}), ({1},{13|2})} are rotations of each other and ({1},{13|2}) is the smallest and ({14|2|3}) is atomic and all atomic s.p. are Lyndon. Hence {1|2|34}, {1|24|3}, {14|2|3} are Lyndon and a(4,3) = 3 Triangle begins:   1;   1,  0;   1,  2,  0;   1,  5,  3,  0;   1, 13, 16,  4, 0;   1, 28, 67, 34, 5, 0;   ... MAPLE EULERitable:=proc(tbl) local ser, out, i, j, tmp; ser:=1+add(add(q^i*t^j*tbl[i][j], j=1..nops(tbl[i])), i=1..nops(tbl)); out:=[]; for i from 1 to nops(tbl) do tmp:=coeff(ser, q, i); ser:=expand(ser*mul(add((-q^i*t^j)^k*choose(abs(coeff(tmp, t, j)), k), k=0..nops(tbl)/i), j = 1..degree(tmp, t))); ser:=subs({seq(q^j=0, j=nops(tbl)+1..degree(ser, q))}, ser); out:=[op(out), [seq(abs(coeff(tmp, t, j)), j=1..degree(tmp, t))]]; end do; out; end: EULERitable([seq([seq(combinat[stirling2](n, k), k=1..n)], n=1..10)]); MATHEMATICA nmax = 11; b[n_, k_] /; k < 1 || k > n = 0; coes[m_] := Product[1/(1 - q^n t^k)^b[n, k], {n, 1, m}, {k, 1, m}] - 1 - Sum[ StirlingS2[i, j] q^i t^j, {i, 1, m}, {j, 1, m}] + O[t]^m + O[q]^m // Normal // CoefficientList[#, {t, q}]&; sol[1] = {b[1, 1] -> 1}; Do[sol[m] = Solve[Thread[(coes[m] /. sol[m - 1]) == 0]], {m, 2, nmax + 1}]; bb = Flatten[Table[sol[m], {m, 1, nmax + 1}]]; Table[b[n, k] /. bb, {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 11 2017 *) CROSSREFS Cf. A008277, A085686, A112339. Cf. A087903, A000110. Sequence in context: A079134 A175528 A163940 * A037186 A004483 A197808 Adjacent sequences:  A112337 A112338 A112339 * A112341 A112342 A112343 KEYWORD nonn,tabl AUTHOR Mike Zabrocki, Sep 05 2005; Aug 06 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 18:16 EST 2019. Contains 319309 sequences. (Running on oeis4.)