This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114299 First row of Modified Schroeder numbers for q=9 (A114295). 8
 1, 1, 1, 1, 1, 2, 5, 13, 34, 89, 288, 1029, 3794, 14113, 52624, 210428, 883881, 3805858, 16570925, 72497060, 325602364, 1498899060, 7017126473, 33185818242, 157858754637, 759960988368, 3706528583080, 18273586377144, 90805138443560, 453695642109973 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS a(i) is the number of paths from (0,0) to (i,i) using steps of length (0,1), (1,0) and (1,1), not passing above the line y=x nor below the line y=4x/5. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..500 C. Hanusa, A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows, PhD Thesis, 2005, University of Washington, Seattle, USA. EXAMPLE The number of paths from (0,0) to (6,6) staying between the lines y=x and y=4x/5 using steps of length (0,1), (1,0) and (1,1) is a(6)=5. MAPLE b:= proc(x, y) option remember; `if`(y>x or y<4*x/5, 0,        `if`(x=0, 1, b(x, y-1)+b(x-1, y)+b(x-1, y-1)))     end: a:= n-> b(n, n): seq(a(n), n=0..35);  # Alois P. Heinz, Apr 25 2013 MATHEMATICA b[x_, y_] := b[x, y] = If[y > x || y < 4*x/5, 0, If[x == 0, 1, b[x, y-1] + b[x-1, y] + b[x-1, y-1]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *) CROSSREFS See also A112833-A112844 and A114292-A114298. Sequence in context: A048575 A099496 A122367 * A112842 A097417 A006801 Adjacent sequences:  A114296 A114297 A114298 * A114300 A114301 A114302 KEYWORD nonn AUTHOR Christopher Hanusa (chanusa(AT)math.binghamton.edu), Nov 21 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 06:39 EDT 2019. Contains 328292 sequences. (Running on oeis4.)