login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238379 Expansion of (1 - x)/(1 - 36*x + x^2). 29
1, 35, 1259, 45289, 1629145, 58603931, 2108112371, 75833441425, 2727895778929, 98128414600019, 3529895029821755, 126978092658983161, 4567681440693572041, 164309553772309610315, 5910576254362452399299, 212616435603275976764449 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

First bisection of A041611.

Primes in the sequences: 1259, 45289, 2727895778929, 126978092658983161,

27748143160149924398920930654217243602139, ...

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..100

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (36,-1).

FORMULA

G.f.: (1 - x)/(1 - 36*x + x^2).

a(n) = a(-n-1) = 36*a(n-1) - a(n-2).

a(n) = ((19-sqrt(323))/38)*(1+(18+sqrt(323))^(2*n+1))/(18+sqrt(323))^n.

a(n+1) - a(n) = 34*A144128(n+1).

323*a(n+1)^2 - ((a(n+2)-a(n))/2)^2 = 34.

Sum_{n>0} 1/(a(n) - 1/a(n)) = 1/34.

See also Tanya Khovanova in Links field:

a(n) = 35*a(n-1) + 34*Sum_{i=0..n-2} a(i).

a(n+2)*a(n) - a(n+1)^2 = 36-2 = 34 = 34*1,

a(n+3)*a(n) - a(n+1)*a(n+2) = 36*(36-2) = 1224 = 34*36.

Generalizing:

a(n+4)*a(n) - a(n+1)*a(n+3) = 44030 = 34*1295,

a(n+5)*a(n) - a(n+1)*a(n+4) = 1583856 = 34*46584,

a(n+6)*a(n) - a(n+1)*a(n+5) = 56974786 = 34*1675729, etc.,

where 1, 36, 1295, 46584, 1675729, ... is the sequence A144128, which is the second bisection of A041611.

a(n)^2 - 36*a(n)*a(n+1) + a(n+1)^2 + 34 = 0 (see comments by Colin Barker in similar sequences).

MATHEMATICA

CoefficientList[Series[(1 - x)/(1 - 36 x + x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[{36, -1}, {1, 35}, 20]

PROG

(MAGMA) [n le 2 select 35^(n-1) else 36*Self(n-1)-Self(n-2): n in [1..20]];

(Sage) m = 20; L.<x> = PowerSeriesRing(ZZ, m); f = (1-x)/(1-36*x+x^2); print f.coefficients()

(PARI) a(n)=([0, 1; -1, 36]^n*[1; 35])[1, 1] \\ Charles R Greathouse IV, May 10 2016

CROSSREFS

Cf. similar sequences with g.f. (1-x)/(1-k*x+x^2): A122367 (k=3), A079935 (k=4), A004253 (k=5), A001653 (k=6), A049685 (k=7), A070997 (k=8), A070998 (k=9), A138288 (k=10), A078922 (k=11), A077417 (k=12), A085260 (k=13), A001570 (k=14), A160682 (k=15), A157456 (k=16), A161595 (k=17). From 18 to 38, even k only, except k=27 and k=31: A007805 (k=18), A075839 (k=20), A157014 (k=22), A159664 (k=24), A153111 (k=26), A097835 (k=27), A159668 (k=28), A157877 (k=30), A111216 (k=31), A159674 (k=32), A077420 (k=34), this sequence (k=36), A097315 (k=38).

Sequence in context: A224387 A224020 A009979 * A158733 A029560 A195617

Adjacent sequences:  A238376 A238377 A238378 * A238380 A238381 A238382

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Feb 25 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 21:06 EDT 2018. Contains 316237 sequences. (Running on oeis4.)