This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099496 a(n) = (-1)^n * Fibonacci(2n+1). 4
 1, -2, 5, -13, 34, -89, 233, -610, 1597, -4181, 10946, -28657, 75025, -196418, 514229, -1346269, 3524578, -9227465, 24157817, -63245986, 165580141, -433494437, 1134903170, -2971215073, 7778742049, -20365011074, 53316291173, -139583862445, 365435296162, -956722026041 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS With interpolated zeros, a Chebyshev transform of A056594, which has g.f. 1/(1+x^2). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)). a(n) is the ceiling of the inverse fractional error in approximating phi, the golden section, by the ratio of two successive terms in the Fibonacci series. - Adam Helman (helman(AT)san.rr.com), May 09 2010 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..2386 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (-3,-1). FORMULA G.f.: (1+x)/(1+3x+x^2);(with interpolated zeros) (1+x^2)/(1+3x^2+x^4); a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*cos((n-2k)*pi/2)} (with interpolated zeros); a(n)=F(n+1)(-1)^(n/2)(1+(-1)^n)/2 (with interpolated zeros). a(n) = (-1)^n * Sum_{k=0..n+1} binomial(n+k,n-k). - Paolo P. Lava, Apr 13 2007 a(n) = -3*a(n-1)-a(n-2),a(0)=1, a(1)=-2. - Philippe Deléham, Nov 03 2008 From Adam Helman (helman(AT)san.rr.com), May 09 2010: (Start) a(n) = ceiling( phi / [F_{n+1}/F_n - phi] ). An exact expression for the inverse fractional error is phi / [F_{n+1}/F_n - phi] = (phi/sqrt(5)) * [(-1)^n *{phi^2n} - 1]. (End) a(n) = (-1)^n*A122367(n). - R. J. Mathar, Jul 23 2010 EXAMPLE The first term: a(1) = ceil( phi / [F_2/F_1 - phi] ) = -2. - Adam Helman (helman(AT)san.rr.com), May 09 2010 a(3) = (-1)^3 * Fibonacci(2 * 3 + 1) = -Fibonacci(7) = -13. - Indranil Ghosh, Feb 04 2017 MAPLE seq((-1)^n*combinat:-fibonacci(2*n+1), n=0 .. 100); # Robert Israel, Jul 02 2015 MATHEMATICA lst={}; Do[AppendTo[lst, (-1)^n*Fibonacci[2*n+1]], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 18 2009 *) Table[(-1)^n Fibonacci[2n+1], {n, 0, 30}] (* Harvey P. Dale, Aug 22 2016 *) PROG (MAGMA) [(-1)^n*Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jul 04 2015 CROSSREFS Cf. A056594, A122367. Sequence in context: A001519 A048575 * A122367 A114299 A112842 A097417 Adjacent sequences:  A099493 A099494 A099495 * A099497 A099498 A099499 KEYWORD easy,sign AUTHOR Paul Barry, Oct 19 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.