This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106729 Sum of two consecutive squares of Lucas numbers (A001254). 8
 5, 10, 25, 65, 170, 445, 1165, 3050, 7985, 20905, 54730, 143285, 375125, 982090, 2571145, 6731345, 17622890, 46137325, 120789085, 316229930, 827900705, 2167472185, 5674515850, 14856075365, 38893710245, 101825055370, 266581455865 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Positive values of x (or y) satisfying x^2 - 3xy + y^2 + 25 = 0. - Colin Barker, Feb 08 2014 Positive values of x (or y) satisfying x^2 - 7xy + y^2 + 225 = 0. - Colin Barker, Feb 09 2014 Positive values of x (or y) satisfying x^2 - 18xy + y^2 + 1600 = 0. - Colin Barker, Feb 26 2014 LINKS Bruno Berselli, Table of n, a(n) for n = 0..300 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (3,-1). FORMULA a(n) = L(n)^2 + L(n+1)^2 = 5*(F(n)^2 + F(n+1)^2) = 5*A001519(n+1). a(n) = 3*a(n-1) - a(n-2). - T. D. Noe, Dec 11 2006 G.f.: 5*(1-x)/(1-3*x+x^2). - Philippe Deléham, Nov 16 2008 a(n) = (5/2)*((3/2)+(1/2)*sqrt(5))^n+(1/2)*((3/2)+(1/2)*sqrt(5))^n*sqrt(5)-(1/2)*((3/2)-(1/2)*sqrt(5))^n *sqrt(5)+(5/2)*((3/2)-(1/2)*sqrt(5))^n, with n>=0. - Paolo P. Lava, Nov 19 2008 a(n) = Fibonacci(n-2)^2 + Fibonacci(n+3)^2. - Gary Detlefs, Dec 28 2010 For n>=3, a(n)=[1,1;1,2]^(n-2).{3,4}.{3,4}. - John M. Campbell, Jul 09 2011 a(n) = L(2n) + L(2n+2). - Richard R. Forberg, Nov 23 2014 From Robert Israel, Nov 23 2014: (Start) a(n) = 5*A000045(2*n+1). E.g.f.: (5+sqrt(5))/2 * exp((3+sqrt(5))*x/2) + (5-sqrt(5))/2 * exp((3-sqrt(5))*x/2). (End) MAPLE seq(combinat:-fibonacci(n-2)^2 + combinat:-fibonacci(n+3)^2, n=0..100); # Robert Israel, Nov 23 2014 MATHEMATICA Table[LucasL[n]^2 + LucasL[n + 1]^2, {n, 0, 30}] (* Wesley Ivan Hurt, Nov 23 2014 *) PROG (MAGMA) [Fibonacci(n-2)^2+Fibonacci(n+3)^2: n in [0..30]]; // Vincenzo Librandi, Jul 09 2011 (PARI) for(n=0, 30, print1(fibonacci(n-2)^2 + fibonacci(n+3)^2, ", ")) \\ G. C. Greubel, Dec 17 2017 CROSSREFS Cf. A000204. Sequence in context: A025625 A112024 A245415 * A212950 A038252 A211865 Adjacent sequences:  A106726 A106727 A106728 * A106730 A106731 A106732 KEYWORD nonn,easy,changed AUTHOR Lekraj Beedassy, May 14 2005 EXTENSIONS Corrected by T. D. Noe, Dec 11 2006 More terms by Bruno Berselli, Jul 17 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.