This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122369 Dimension of 5-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 5 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j). 7
 1, 4, 19, 93, 459, 2273, 11274, 55964, 277924, 1380527, 6858356, 34074280, 169297743, 841173845, 4179517118, 20766807551, 103184684826, 512698227699, 2547469553647, 12657750705603, 62893284231103, 312501512711984, 1552744642741738, 7715214279423070 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782. M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637. LINKS N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math.CO/0502082 , Canad. J. Math. 60 (2008), no. 2, 266-296 FORMULA G.f. (1-6*q+11*q^2-6*q^3)/(1-10*q+32*q^2-37*q^3+11*q^4) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n)/sum( q^d/prod((1-r*q),r=1..d), d=0..n) where n=5. EXAMPLE a(1) = 4 because x1-x2, x2-x3, x3-x4, x4-x5 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5. MAPLE coeffs(convert(series((1-6*q+11*q^2-6*q^3)/(1-10*q+32*q^2-37*q^3+11*q^4), q, 30), `+`)-O(q^30), q); MATHEMATICA gf = With[{n = 5}, Sum[n!/(n-d)! q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]/Sum[ q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]]; CoefficientList[gf + O[q]^22, q] (* Jean-François Alcover, Nov 17 2018 *) CROSSREFS Cf. A055105, A055107, A087903, A074664, A008277, A112340, A122367, A122369, A122370, A122371, A122372. Sequence in context: A288687 A275751 A131552 * A005978 A083065 A137636 Adjacent sequences:  A122366 A122367 A122368 * A122370 A122371 A122372 KEYWORD nonn AUTHOR Mike Zabrocki, Aug 30 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 17:40 EST 2019. Contains 319199 sequences. (Running on oeis4.)