

A102370


"Sloping binary numbers": write numbers in binary under each other (rightjustified), read diagonals in upward direction, convert to decimal.


63



0, 3, 6, 5, 4, 15, 10, 9, 8, 11, 14, 13, 28, 23, 18, 17, 16, 19, 22, 21, 20, 31, 26, 25, 24, 27, 30, 61, 44, 39, 34, 33, 32, 35, 38, 37, 36, 47, 42, 41, 40, 43, 46, 45, 60, 55, 50, 49, 48, 51, 54, 53, 52, 63, 58, 57, 56, 59, 126, 93, 76, 71, 66, 65, 64, 67, 70, 69
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

All terms are distinct, but certain terms (see A102371) are missing. But see A103122.
Trajectory of 1 is 1, 3, 5, 15, 17, 19, 21, 31, 33, ..., see A103192.


REFERENCES

David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.


LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
Index entries for sequences related to binary expansion of n


FORMULA

a(n) = n + Sum_{ k >= 1 such that n + k == 0 mod 2^k } 2^k. (Cf. A103185.) In particular, a(n) >= n.  N. J. A. Sloane, Mar 18 2005
a(n) = A105027(A062289(n)) for n > 0.  Reinhard Zumkeller, Jul 21 2012


EXAMPLE

........0
........1
.......10
.......11
......100
......101
......110
......111
.....1000
.........
The upwardsloping diagonals are:
0
11
110
101
100
1111
1010
.......
giving 0, 3, 6, 5, 4, 15, 10, ...
The sequence has a natural decomposition into blocks (see the paper): 0; 3; 6, 5, 4; 15, 10, 9, 8, 11, 14, 13; 28, 23, 18, 17, 16, 19, 22, 21, 20, 31, 26, 25, 24, 27, 30; 61, ...
Reading the array of binary numbers along diagonals with slope 1 gives this sequence, slope 2 gives A105085, slope 0 gives A001477 and slope 1 gives A105033.


MAPLE

A102370:=proc(n) local t1, l; t1:=n; for l from 1 to n do if n+l mod 2^l = 0 then t1:=t1+2^l; fi; od: t1; end;


MATHEMATICA

f[n_] := Block[{k = 1, s = 0, l = Max[2, Floor[Log[2, n + 1] + 2]]}, While[k < l, If[ Mod[n + k, 2^k] == 0, s = s + 2^k]; k++ ]; s]; Table[ f[n] + n, {n, 0, 71}] (* Robert G. Wilson v, Mar 21 2005 *)


PROG

(PARI) A102370(n)=n1+sum(k=0, ceil(log(n+1)/log(2)), if((n+k)%2^k, 0, 2^k)) \\ Benoit Cloitre, Mar 20 2005
(PARI) {a(n) = if( n<1, 0, sum( k=0, length( binary( n)), bitand( n + k, 2^k)))} /* Michael Somos, Mar 26 2012 */
(Haskell)
a102370 n = a102370_list !! n
a102370_list = 0 : map (a105027 . toInteger) a062289_list
 Reinhard Zumkeller, Jul 21 2012
(Python)
def a(n): return 0 if n<1 else sum([(n + k)&(2**k) for k in xrange(len(bin(n)[2:]) + 1)]) # Indranil Ghosh, May 03 2017


CROSSREFS

Related sequences (1): A103542 (binary version), A102371 (complement), A103185, A103528, A103529, A103530, A103318, A034797, A103543, A103581, A103582, A103583.
Related sequences (2): A103584, A103585, A103586, A103587, A103127, A103192 (trajectory of 1), A103122, A103588, A103589, A103202 (sorted), A103205 (base 10 version).
Related sequences (3): A103747 (trajectory of 2), A103621, A103745, A103615, A103842, A103863, A104234, A104235, A103813, A105023, A105024, A105025, A105026, A105027, A105028.
Related sequences (4): A105029, A105030, A105031, A105032, A105033, A105034, A105035, A105108.
Related sequences (5): A105229, A105271, A104378, A104401, A104403, A104489, A104490, A104853, A104893, A104894, A105085.
Sequence in context: A159067 A159058 A323778 * A291050 A268981 A245652
Adjacent sequences: A102367 A102368 A102369 * A102371 A102372 A102373


KEYWORD

nonn,nice,easy,base,look


AUTHOR

Philippe Deléham, Feb 13 2005


EXTENSIONS

More terms from Benoit Cloitre, Mar 20 2005


STATUS

approved



