login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102371 Numbers missing from A102370. 14
1, 2, 7, 12, 29, 62, 123, 248, 505, 1018, 2047, 4084, 8181, 16374, 32755, 65520, 131057, 262130, 524279, 1048572, 2097133, 4194286, 8388587, 16777192, 33554409, 67108842, 134217711, 268435428, 536870885 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Indices of negative numbers in A103122.

Write numbers in binary under each other; start at 2^k, read in upward direction with the first bit omitted and convert to decimal:

. . . . . . . . . . 0

. . . . . . . . . . 1

.. . . . . . . . . 10 < -- Starting here, the upward diagonal (first bit omitted) reads 1 -> 1

.. . . . . . . . . 11

. . . . . . . . . 100 < -- Starting here, the upward diagonal (first bit omitted) reads 10 -> 2

. . . . . . . . . 101

. . . . . . . . . 110

. . . . . . . . . 111

.. . . . . . . . 1000 < -- Starting here, the upward diagonal (first bit omitted) reads 111 -> 7

. . . . . . . . .1001

Thus a(n) = A102370(2^n - n) - 2^n.

REFERENCES

David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].

FORMULA

a(n) = -n + Sum_{ k >= 1, k == n mod 2^k } 2^k. - N. J. A. Sloane and David Applegate, Mar 22 2005. E.g. a(5) = -5 + 2^1 + 2^5 = 29.

a(2^k + k) -a(k) = 2^(2^k + k) - 2^k, with k>= 1.

a(1)=1, for n>1, a(n)= a(n-1) XOR (a(n-1) + n), where XOR is the bitwise exclusive-or operator. - Alex Ratushnyak, Apr 21 2012

a(n) = A105027(A000225(n)). - Reinhard Zumkeller, Jul 21 2012

MAPLE

A102371:= proc (n) local t1, l; t1 := -n; for l to n do if `mod`(n-l, 2^l) = 0 then t1 := t1+2^l end if end do; t1 end proc;

PROG

(Python)

a=1

for n in range(2, 66):

. print a,

. a ^= a+n

# from Alex Ratushnyak, Apr 21 2012

(Haskell)

a102371 n = a102371_list !! (n-1)

a102371_list = map (a105027 . toInteger) $ tail a000225_list

-- Reinhard Zumkeller, Jul 21 2012

CROSSREFS

Cf. A102370, A103530, A103581, A103582, A103583.

Sequence in context: A288888 A293621 A175879 * A007230 A290234 A327734

Adjacent sequences:  A102368 A102369 A102370 * A102372 A102373 A102374

KEYWORD

nonn,base

AUTHOR

Philippe Deléham, Feb 13 2005

EXTENSIONS

More terms from Benoit Cloitre, Mar 20 2005

a(16)-a(22) from Robert G. Wilson v, Mar 21 2005

a(15)-a(29) from David Applegate, Mar 22 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 19:09 EST 2020. Contains 331249 sequences. (Running on oeis4.)