login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103318 Number of solutions i in range [0,n-1] to i == 0 mod 2^(n-i). 5
1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

i=0 is always a solution.

a(n) is the number of 1's in (A103745(n) written in base 2). - Philippe Deléham, Apr 02 2005

LINKS

Table of n, a(n) for n=1..99.

David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].

FORMULA

a(n) = A104234(2^n - n). - Philippe Deléham, Apr 21 2005

EXAMPLE

For n = 11 solutions are i = 0, 8 and 10. Four solutions occur for the first time at n = 2059: they are i = 0, 2048, 2056, 2058. Five solutions occur for the first time at n = 2^2059 + 2059 (see A034797).

MAPLE

f:= proc (n) local t1, l; t1 := 0; for l to n do if `mod`(n-l, 2^l) = 0 then t1 := t1+1 end if end do; t1 end proc;

MATHEMATICA

f[n_] := Block[{c = 1, k = Max[1, n - Floor[ Log[2, n] + 2]]}, While[k < n, If[ Mod[k, 2^(n - k)] == 0, c++ ]; k++ ]; c]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Mar 21 2005 *)

CROSSREFS

For records see A034797. Cf. A103745.

Sequence in context: A297770 A330617 A145866 * A197775 A002321 A043530

Adjacent sequences:  A103315 A103316 A103317 * A103319 A103320 A103321

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mar 21 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 00:02 EDT 2020. Contains 337333 sequences. (Running on oeis4.)