login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105023 A102370(n) - n. Or, 2*A103185(n). 1
0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 34, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 68, 34, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 34, 16, 10, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

When written in base 2 as a right justified table, columns have periods 1, 2, 4, 8, ... - Philippe Deléham, Apr 21 2005

REFERENCES

David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.

LINKS

Table of n, a(n) for n=0..94.

David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].

FORMULA

a(n) = Sum_{ k >= 1 such that n + k == 0 mod 2^k } 2^k.

EXAMPLE

Has a natural decomposition into blocks: 0; 2; 4, 2, 0; 10, 4, 2, 0, 2, 4, 2; 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4; 34, 16, 10, 4, ... where the leading term in each block is given by A105024.

MAPLE

s:= proc (n) local t1, l; t1 := 0; for l to n do if `mod`(n+l, 2^l) = 0 then t1 := t1+2^l end if end do; t1 end proc;

CROSSREFS

Cf. A102370, A103185, A105024.

Sequence in context: A094239 A273240 A201316 * A201558 A052285 A046858

Adjacent sequences:  A105020 A105021 A105022 * A105024 A105025 A105026

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane, Apr 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 11:23 EST 2016. Contains 278939 sequences.