This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105023 A102370(n) - n. Or, 2*A103185(n). 1
 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 34, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 68, 34, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 34, 16, 10, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS When written in base 2 as a right justified table, columns have periods 1, 2, 4, 8, ... - Philippe Deléham, Apr 21 2005 REFERENCES David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp. LINKS David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps]. FORMULA a(n) = Sum_{ k >= 1 such that n + k == 0 mod 2^k } 2^k. EXAMPLE Has a natural decomposition into blocks: 0; 2; 4, 2, 0; 10, 4, 2, 0, 2, 4, 2; 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4; 34, 16, 10, 4, ... where the leading term in each block is given by A105024. MAPLE s:= proc (n) local t1, l; t1 := 0; for l to n do if `mod`(n+l, 2^l) = 0 then t1 := t1+2^l end if end do; t1 end proc; CROSSREFS Cf. A102370, A103185, A105024. Sequence in context: A094239 A273240 A201316 * A279315 A303293 A201558 Adjacent sequences:  A105020 A105021 A105022 * A105024 A105025 A105026 KEYWORD nonn,base AUTHOR N. J. A. Sloane, Apr 03 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 03:32 EDT 2019. Contains 327209 sequences. (Running on oeis4.)