



0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 34, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 68, 34, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 2, 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4, 34, 16, 10, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

When written in base 2 as a right justified table, columns have periods 1, 2, 4, 8, ...  Philippe Deléham, Apr 21 2005


REFERENCES

David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.


LINKS

Table of n, a(n) for n=0..94.
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].


FORMULA

a(n) = Sum_{ k >= 1 such that n + k == 0 mod 2^k } 2^k.


EXAMPLE

Has a natural decomposition into blocks: 0; 2; 4, 2, 0; 10, 4, 2, 0, 2, 4, 2; 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4; 34, 16, 10, 4, ... where the leading term in each block is given by A105024.


MAPLE

s:= proc (n) local t1, l; t1 := 0; for l to n do if `mod`(n+l, 2^l) = 0 then t1 := t1+2^l end if end do; t1 end proc;


CROSSREFS

Cf. A102370, A103185, A105024.
Sequence in context: A094239 A273240 A201316 * A201558 A052285 A046858
Adjacent sequences: A105020 A105021 A105022 * A105024 A105025 A105026


KEYWORD

nonn,base


AUTHOR

N. J. A. Sloane, Apr 03 2005


STATUS

approved



