login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105027
Write numbers in binary under each other; to get the next block of 2^k (k >= 0) terms of the sequence, start at 2^k, read diagonals in upward direction and convert to decimal.
13
0, 1, 3, 2, 6, 5, 4, 7, 15, 10, 9, 8, 11, 14, 13, 12, 28, 23, 18, 17, 16, 19, 22, 21, 20, 31, 26, 25, 24, 27, 30, 29, 61, 44, 39, 34, 33, 32, 35, 38, 37, 36, 47, 42, 41, 40, 43, 46, 45, 60, 55, 50, 49, 48, 51, 54, 53, 52, 63, 58, 57, 56, 59, 62, 126, 93, 76, 71, 66, 65, 64, 67, 70
OFFSET
0,3
COMMENTS
This is a permutation of the nonnegative integers.
Structure: blocks of size 2^k - 1 taken from A102370, interspersed with terms of A102371. - Philippe Deléham, Nov 17 2007
a(A062289(n)) = A102370(n) for n > 0; a(A000225(n)) = A102371(n); a(A214433(n)) = A105025(a(n)). - Reinhard Zumkeller, Jul 21 2012
LINKS
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
FORMULA
a(2^n - 1) = A102371(n) for n > 0. - Philippe Deléham, May 10 2005
EXAMPLE
0
1
10
11
-> 100 Starting here, the upward diagonals
101 read 110, 101, 100, 111, giving the block 6, 5, 4, 7.
110
111
1000
1001
1010
1011
...
MATHEMATICA
block[k_] := Module[{t}, t = Table[PadLeft[IntegerDigits[n, 2], k+1], {n, 2^(k-1), 2^(k+1)-1}]; Table[FromDigits[Table[t[[n-m+1, m]], {m, 1, k+1}], 2], {n, 2^(k-1)+1, 2^(k-1)+2^k}]]; block[0] = {0, 1}; Table[block[k], {k, 0, 6}] // Flatten (* Jean-François Alcover, Jun 30 2015 *)
PROG
(Haskell)
import Data.Bits ((.|.), (.&.))
a105027 n = foldl (.|.) 0 $ zipWith (.&.)
a000079_list $ enumFromTo (n + 1 - a070939 n) n
-- Reinhard Zumkeller, Jul 21 2012
(PARI) apply( {A105027(n, L=exponent(n+!n))=sum(k=0, L, bitand(n+k-L, 2^k))}, [0..55]) \\ M. F. Hasler, Apr 18 2022
CROSSREFS
Cf. A214414 (fixed points), A214417 (inverse).
Sequence in context: A244426 A214417 A377440 * A234024 A194861 A194840
KEYWORD
nonn,nice,base
AUTHOR
N. J. A. Sloane, Apr 03 2005
EXTENSIONS
More terms from John W. Layman, Apr 07 2005
STATUS
approved