login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059270 a(n) is both the sum of n+1 consecutive integers and the sum of the n immediately higher consecutive integers. 22
0, 3, 15, 42, 90, 165, 273, 420, 612, 855, 1155, 1518, 1950, 2457, 3045, 3720, 4488, 5355, 6327, 7410, 8610, 9933, 11385, 12972, 14700, 16575, 18603, 20790, 23142, 25665, 28365, 31248, 34320, 37587, 41055, 44730, 48618, 52725, 57057, 61620 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Group the non-multiples of n as follows, e.g., for n = 4: (1,2,3), (5,6,7), (9,10,11), (13,14,15), ... Then a(n) is the sum of the members of the n-th group. Or, the sum of (n-1)successive numbers preceding n^2. - Amarnath Murthy, Jan 19 2004

Convolution of odds (A005408) and multiples of three (A008585). G.f. is the product of the g.f. of A005408 by the g.f. of A008585. - Graeme McRae, Jun 06 2006

Sums of rows of the triangle in A126890. - Reinhard Zumkeller, Dec 30 2006

Corresponds to the Wiener indices of C_{2n+1} i.e., the cycle on 2n+1 vertices (n > 0). - K.V.Iyer, Mar 16 2009

Also the product of the three numbers from A005843(n) up to A163300(n), divided by 8. - Juri-Stepan Gerasimov, Jul 26 2009

Partial sums of A033428. - Charlie Marion, Dec 08 2013

For n > 0, sum of multiples of n and (n+1) from 1 to n*(n+1). - Zak Seidov, Aug 07 2016

A generalization of Ianakiev's formula, a(n) = A005408(n)*A000217(n), follows. A005408(n+k)*A000217(n) is the sum of n+1 consecutive integers and, after skipping k integers, the sum of the n immediately higher consecutive integers. For example, for n = 3 and k = 2, 9*6 = 54 = 12+13+14+15 = 17+18+19. - Charlie Marion, Jan 25 2022

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.

Roger B. Nelsen, Proof Without Words: Consecutive Sums of Consecutive Integers, Math. Mag., 63 (1990), 25.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = n*(n+1)*(2*n+1)/2.

a(n) = A000330(n)*3 = A006331(n)*3/2 = A055112(n)/2 = A000217(A002378(n)) - A000217(A005563(n-1)) = A000217(A005563(n)) - A000217(A002378(n)).

a(n) = A110449(n+1, n-1) for n > 1.

a(n) = Sum_{k=A000290(n) .. A002378(n)} k = Sum_{k=n^2..n^2+n} k.

a(n) = Sum_{k=n^2+n+1 .. n^2+2*n} k = Sum_{k=A002061(n+1) .. A005563(n)} k.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6 = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Ant King, Jan 03 2011

G.f.: 3*x*(1+x)/(1-x)^4. - Ant King, Jan 03 2011

a(n) = A000578(n+1) - A000326(n+1). - Ivan N. Ianakiev, Nov 29 2012

a(n) = A005408(n)*A000217(n) = a(n-1) + 3*A000290(n). -Ivan N. Ianakiev, Mar 08 2013

a(n) = n^3 + n^2 + A000217(n). - Charlie Marion, Dec 04 2013

From Ilya Gutkovskiy, Aug 08 2016: (Start)

E.g.f.: x*(6 + 9*x + 2*x^2)*exp(x)/2.

Sum_{n>=1} 1/a(n) = 2*(3 - 4*log(2)) = 0.4548225555204375246621... (End)

a(n) = Sum_{k=0..2*n} A001318(k). - Jacob Szlachetka, Dec 20 2021

a(n) = Sum_{k=0..n} A000326(k) + A005449(k). - Jacob Szlachetka, Dec 21 2021

Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(Pi-3). - Amiram Eldar, Sep 17 2022

EXAMPLE

a(5) = 25 + 26 + 27 + 28 + 29 + 30 = 31 + 32 + 33 + 34 + 35 = 165.

MAPLE

A059270 := proc(n) n*(n+1)*(2*n+1)/2 ; end proc: # R. J. Mathar, Jul 10 2011

MATHEMATICA

# (#+1)(2#+1)/2 &/@ Range[0, 39] (* Ant King, Jan 03 2011 *)

CoefficientList[Series[3 x (1 + x)/(x - 1)^4, {x, 0, 39}], x]

LinearRecurrence[{4, -6, 4, -1}, {0, 3, 15, 42}, 50] (* Vincenzo Librandi, Jun 23 2012 *)

PROG

(Sage) [bernoulli_polynomial(n+1, 3) for n in range(0, 41)] # Zerinvary Lajos, May 17 2009

(Magma) I:=[0, 3, 15, 42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 23 2012

(PARI) a(n) = n*(n+1)*(2*n+1)/2 \\ Charles R Greathouse IV, Mar 08 2013

CROSSREFS

Cf. A059255 for analog for sum of squares.

Cf. A222716 for the analogous sum of triangular numbers.

Cf. A234319 for nonexistence of analogs for sums of n-th powers, n > 2. - Jonathan Sondow, Apr 23 2014

Cf. A098737 (first subdiagonal).

Bisection of A109900.

Sequence in context: A012222 A069267 A348411 * A219085 A346142 A093627

Adjacent sequences:  A059267 A059268 A059269 * A059271 A059272 A059273

KEYWORD

nonn,easy

AUTHOR

Henry Bottomley, Jan 24 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 03:14 EDT 2022. Contains 357261 sequences. (Running on oeis4.)