OFFSET
0,2
COMMENTS
Group the non-multiples of n as follows, e.g., for n = 4: (1,2,3), (5,6,7), (9,10,11), (13,14,15), ... Then a(n) is the sum of the members of the n-th group. Or, the sum of (n-1)successive numbers preceding n^2. - Amarnath Murthy, Jan 19 2004
Convolution of odds (A005408) and multiples of three (A008585). G.f. is the product of the g.f. of A005408 by the g.f. of A008585. - Graeme McRae, Jun 06 2006
Sums of rows of the triangle in A126890. - Reinhard Zumkeller, Dec 30 2006
Corresponds to the Wiener indices of C_{2n+1} i.e., the cycle on 2n+1 vertices (n > 0). - K.V.Iyer, Mar 16 2009
Also the product of the three numbers from A005843(n) up to A163300(n), divided by 8. - Juri-Stepan Gerasimov, Jul 26 2009
Partial sums of A033428. - Charlie Marion, Dec 08 2013
For n > 0, sum of multiples of n and (n+1) from 1 to n*(n+1). - Zak Seidov, Aug 07 2016
A generalization of Ianakiev's formula, a(n) = A005408(n)*A000217(n), follows. A005408(n+k)*A000217(n) is the sum of n+1 consecutive integers and, after skipping k integers, the sum of the n immediately higher consecutive integers. For example, for n = 3 and k = 2, 9*6 = 54 = 12+13+14+15 = 17+18+19. - Charlie Marion, Jan 25 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Roger B. Nelsen, Proof Without Words: Consecutive Sums of Consecutive Integers, Math. Mag., 63 (1990), 25.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = n*(n+1)*(2*n+1)/2.
a(n) = A000330(n)*3 = A006331(n)*3/2 = A055112(n)/2 = A000217(A002378(n)) - A000217(A005563(n-1)) = A000217(A005563(n)) - A000217(A002378(n)).
a(n) = A110449(n+1, n-1) for n > 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6 = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Ant King, Jan 03 2011
G.f.: 3*x*(1+x)/(1-x)^4. - Ant King, Jan 03 2011
a(n) = n^3 + n^2 + A000217(n). - Charlie Marion, Dec 04 2013
From Ilya Gutkovskiy, Aug 08 2016: (Start)
E.g.f.: x*(6 + 9*x + 2*x^2)*exp(x)/2.
Sum_{n>=1} 1/a(n) = 2*(3 - 4*log(2)) = 0.4548225555204375246621... (End)
a(n) = Sum_{k=0..2*n} A001318(k). - Jacob Szlachetka, Dec 20 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(Pi-3). - Amiram Eldar, Sep 17 2022
EXAMPLE
a(5) = 25 + 26 + 27 + 28 + 29 + 30 = 31 + 32 + 33 + 34 + 35 = 165.
MAPLE
A059270 := proc(n) n*(n+1)*(2*n+1)/2 ; end proc: # R. J. Mathar, Jul 10 2011
MATHEMATICA
# (#+1)(2#+1)/2 &/@ Range[0, 39] (* Ant King, Jan 03 2011 *)
CoefficientList[Series[3 x (1 + x)/(x - 1)^4, {x, 0, 39}], x]
LinearRecurrence[{4, -6, 4, -1}, {0, 3, 15, 42}, 50] (* Vincenzo Librandi, Jun 23 2012 *)
PROG
(Sage) [bernoulli_polynomial(n+1, 3) for n in range(0, 41)] # Zerinvary Lajos, May 17 2009
(Magma) I:=[0, 3, 15, 42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 23 2012
(PARI) a(n) = n*(n+1)*(2*n+1)/2 \\ Charles R Greathouse IV, Mar 08 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jan 24 2001
STATUS
approved