This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A222716 Numbers which are both the sum of n+1 consecutive triangular numbers and the sum of the n-1 immediately following triangular numbers. 8
 0, 10, 100, 460, 1460, 3710, 8120, 15960, 28920, 49170, 79420, 122980, 183820, 266630, 376880, 520880, 705840, 939930, 1232340, 1593340, 2034340, 2567950, 3208040, 3969800, 4869800, 5926050, 7158060, 8586900, 10235260, 12127510, 14289760, 16749920, 19537760, 22684970, 26225220, 30194220, 34629780, 39571870, 45062680, 51146680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The n+1 consecutive triangular numbers start with the A028387(n-2)-th triangular number A000217(n^2-n-1), while the n-1 consecutive triangular numbers start with the A000290(n)-th triangular number A000217(n^2). Similar sums of consecutive integers are A059270. Similar sums of consecutive squares are A059255. Berselli points out that a(n) = 10*A024166(n-1) = A000292(n-1)*(3*n^2 - 2). Since a(n) is a sum of triangular numbers, 10=1+2+3+4 is the 4th triangular number, A024166 is a sum of cubes, and A000292 is a tetrahedral number, is there a geometric proof of Berselli's formula? (Compare Nelsen and Unal's "Proof Without Words: Runs of Triangular Numbers.") [Jonathan Sondow, Mar 04 2013] LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 Roger B. Nelsen and Hasan Unal, Proof Without Words: Runs of Triangular Numbers, Math. Mag., 85 (2012), 373. Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA a(n) = T(n^2-n-1)+T(n^2-n)+...+T(n^2-1) = T(n^2)+T(n^2+1)+...+T(n^2+n-2), where T = A000217. a(n) = (3*n^5 - 5*n^3 + 2*n)/6 = (n-1)*n*(n+1)*(3*n^2 - 2)/6. G.f.: 10*x^2*(1+4*x+x^2)/(1-x)^6. [Bruno Berselli, Mar 04 2013] a(n) = -a(-n) = 10*A024166(n-1) = A000292(n-1)*A100536(n). [Bruno Berselli, Mar 04 2013] a(n) = TP(n^2-1)-TP(n^2-n-2) = TP(n^2+n-2)-TP(n^2-1) = TP(n-1)*(3*n^2-2), where TP = A000292. [Jonathan Sondow, Mar 04 2013] EXAMPLE T(1) + T(2) + T(3) = 1 + 3 + 6 = 10 = T(4) and 4 = 2^2, so a(2) = 10. T(5) + T(6) + T(7) + T(8) = 15 + 21 + 28 + 36 = 100 = 45 + 55 = T(9) + T(10) and 9 = 3^2, so a(3) = 100. MATHEMATICA Table[ n/6 (2 - 5 n^2 + 3 n^4), {n, 1, 40}] LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 10, 100, 460, 1460, 3710}, 40] (* Harvey P. Dale, Apr 19 2016 *) CROSSREFS Cf. A000217, A000292, A024166, A059255, A059270. Sequence in context: A208365 A208144 A207713 * A111434 A208074 A092707 Adjacent sequences:  A222713 A222714 A222715 * A222717 A222718 A222719 KEYWORD nonn,easy AUTHOR Jonathan Sondow, Mar 02 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 07:30 EDT 2018. Contains 315308 sequences. (Running on oeis4.)