login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010887 Simple periodic sequence: repeat 1,2,3,4,5,6,7,8. 5
1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Partial sums are given by A130486(n)+n+1. - Hieronymus Fischer, Jun 08 2007

1371742/11111111=0,123456781234567812345678... [From Eric Desbiaux, Nov 03 2008]

Terms of the simple continued fraction of 2494/(3*sqrt(13493990)-9280). [From Paolo P. Lava, Feb 16 2009]

LINKS

Table of n, a(n) for n=0..80.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).

FORMULA

a(n) = 1 + (n mod 8) - Paolo P. Lava, Nov 21 2006

a(n)=1/2*(9-(-1)^n-2*(-1)^(b/4)-4*(-1)^((b-2+2*(-1)^(b/4))/8)) where b=2n-1+(-1)^n. Also a(n)=A010877(n)+1. - G.f.: g(x)=(sum{0<=k<8, (k+1)*x^k})/(1-x^8). Also: g(x)=(8x^9-9x^8+1)/((1-x^8)(1-x)^2). - Hieronymus Fischer, Jun 08 2007

PROG

(Haskell)

a010887 = (+ 1) . flip mod 8

a010887_list = cycle [1..8]

-- Reinhard Zumkeller, Nov 09 2014, Mar 04 2014

CROSSREFS

Cf. A010872, A010873, A010874, A010875, A010876, A010878, A004526, A002264, A002265, A002266.

Cf. A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165). [From Klaus Brockhaus, May 01 2010]

Sequence in context: A277547 A190598 A053844 * A101412 A053830 A033929

Adjacent sequences:  A010884 A010885 A010886 * A010888 A010889 A010890

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 10:33 EDT 2018. Contains 316414 sequences. (Running on oeis4.)