OFFSET
0,2
COMMENTS
Partial sums are given by A130486(n)+n+1. - Hieronymus Fischer, Jun 08 2007
1371742/11111111 = 0.123456781234567812345678... - Eric Desbiaux, Nov 03 2008
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).
FORMULA
a(n) = 1 + (n mod 8) - Paolo P. Lava, Nov 21 2006
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = (1/2)*(9 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n.
Also a(n) = A010877(n) + 1.
G.f.: g(x) = (1/(1-x^8))*Sum_{k=0..7} (k+1)*x^k.
Also: g(x) = (8x^9 - 9x^8 + 1)/((1-x^8)*(1-x)^2). (End)
MATHEMATICA
PadRight[{}, 90, Range[8]] (* Harvey P. Dale, May 10 2022 *)
PROG
(Haskell)
a010887 = (+ 1) . flip mod 8
a010887_list = cycle [1..8]
-- Reinhard Zumkeller, Nov 09 2014, Mar 04 2014
(Python)
def A010887(n): return 1 + (n & 7) # Chai Wah Wu, May 25 2022
CROSSREFS
Cf. A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165). - Klaus Brockhaus, May 01 2010
KEYWORD
nonn,easy
AUTHOR
STATUS
approved