

A010889


Simple periodic sequence: repeat 1,2,3,4,5,6,7,8,9,10.


3



1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Partial sums are given by A130488(n)+n+1.  Hieronymus Fischer, Jun 08 2007
Continued fraction expansion of (232405+sqrt(71216963807))/348378. [From Klaus Brockhaus, May 15 2010]


LINKS

Table of n, a(n) for n=0..100.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1).


FORMULA

a(n) = 1 + (n mod 10)  Paolo P. Lava, Nov 21 2006
a(n)=A010879(n)+1.  G.f.: g(x)=(sum{0<=k<10, (k+1)*x^k})/(1x^10). Also: g(x)=(10x^1111x^10+1)/((1x^10)(1x)^2).  Hieronymus Fischer, Jun 08 2007


MATHEMATICA

PadRight[{}, 120, Range[10]] (* Harvey P. Dale, Feb 22 2015 *)


CROSSREFS

Cf. A010872, A010873, A010874, A010875, A010876, A010877, A010878, A004526, A002264, A002265, A002266.
Cf. A177933 (decimal expansion of (232405+sqrt(71216963807))/348378). [From Klaus Brockhaus, May 15 2010]
Sequence in context: A322629 A190599 A214587 * A053831 A263131 A274206
Adjacent sequences: A010886 A010887 A010888 * A010890 A010891 A010892


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Klaus Brockhaus, May 15 2010


STATUS

approved



