login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010877 a(n) = n mod 8. 37
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The rightmost digit in the base-8 representation of n. Also, the equivalent value of the three rightmost digits in the base-2 representation of n. - Hieronymus Fischer, Jun 12 2007

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..65536

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).

FORMULA

Complex representation: a(n) = (1/8)*(1-r^n)*Sum_{k=1..7} k*Product_{m=1..7, m<>k} (1 - r^(n-m)) where r = exp(Pi/4*i) = (1+i)*sqrt(2)/2 and i=sqrt(-1).

Trigonometric representation: a(n) = 256*(sin(n*Pi/8))^2*Sum_{k=1..7} k*Product_{m=1..7, m<>k} (sin((n-m)*Pi/8))^2.

G.f.: g(x) = (Sum_{k=1..7}, k*x^k)/(1-x^8).

Also: g(x) = x(7x^8-8x^7+1)/((1-x^8)(1-x)^2). - Hieronymus Fischer, May 31 2007

a(n) = n mod 2 + 2*(floor(n/2) mod 4) = A000035(n) + 2*A010873(A004526(n)).

a(n) = n mod 4 + 4*(floor(n/4) mod 2) = A010873(n) + 4*A000035(A002265(n)).

a(n) = n mod 2 + 2*(floor(n/2) mod 2) + 4*(floor(n/4) mod 2) = A000035(n) + 2*A000035(A004526(n))) + 4*A000035(A002265(n)). - Hieronymus Fischer, Jun 12 2007

a(n) = (1/2)*(7 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n. - Hieronymus Fischer, Jun 12 2007

General formula for period 2^k: a(n) = (1/2)*(2^k - 1 - Sum_{j=0..k-1} 2^j*(-1)^p(j,n)) where p(j,n) is defined recursively by p(0,n)=n, p(j,n) = (1/4)*(2*p(j-1,n) - 1 + (-1)^p(j-1,n)). - Hieronymus Fischer, Jun 14 2007

a(n) = floor(1234567/99999999*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013

a(n) = floor(48913/2396745*8^(n+1)) mod 8. - Hieronymus Fischer, Jan 04 2013

MATHEMATICA

Table[Mod[n, 8], {n, 0, 120}]   (* Harvey P. Dale, Apr 21 2011 *)

PROG

(PARI) vector(100, i, i)%8 \\ Charles R Greathouse IV, Jul 16 2011

(Python)

def A010877(n): return n&7 # Chai Wah Wu, Jul 09 2022

CROSSREFS

Partial sums: A130486. Other related sequences A130481, A130482, A130483, A130484, A130485.

Cf. A000035, A010887, A010873, A130909, A168181, A244413, A253513.

Sequence in context: A037850 A037886 A031045 * A309959 A257848 A195831

Adjacent sequences:  A010874 A010875 A010876 * A010878 A010879 A010880

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Formula section re-edited for better readability by Hieronymus Fischer

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 07:57 EST 2022. Contains 358354 sequences. (Running on oeis4.)