The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010877 a(n) = n mod 8. 37
 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The rightmost digit in the base-8 representation of n. Also, the equivalent value of the three rightmost digits in the base-2 representation of n. - Hieronymus Fischer, Jun 12 2007 LINKS Antti Karttunen, Table of n, a(n) for n = 0..65536 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1). FORMULA Complex representation: a(n) = (1/8)*(1-r^n)*Sum_{k=1..7} k*Product_{m=1..7, m<>k} (1 - r^(n-m)) where r = exp(Pi/4*i) = (1+i)*sqrt(2)/2 and i=sqrt(-1). Trigonometric representation: a(n) = 256*(sin(n*Pi/8))^2*Sum_{k=1..7} k*Product_{m=1..7, m<>k} (sin((n-m)*Pi/8))^2. G.f.: g(x) = (Sum_{k=1..7}, k*x^k)/(1-x^8). Also: g(x) = x(7x^8-8x^7+1)/((1-x^8)(1-x)^2). - Hieronymus Fischer, May 31 2007 a(n) = n mod 2 + 2*(floor(n/2) mod 4) = A000035(n) + 2*A010873(A004526(n)). a(n) = n mod 4 + 4*(floor(n/4) mod 2) = A010873(n) + 4*A000035(A002265(n)). a(n) = n mod 2 + 2*(floor(n/2) mod 2) + 4*(floor(n/4) mod 2) = A000035(n) + 2*A000035(A004526(n))) + 4*A000035(A002265(n)). - Hieronymus Fischer, Jun 12 2007 a(n) = (1/2)*(7 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n. - Hieronymus Fischer, Jun 12 2007 General formula for period 2^k: a(n) = (1/2)*(2^k - 1 - Sum_{j=0..k-1} 2^j*(-1)^p(j,n)) where p(j,n) is defined recursively by p(0,n)=n, p(j,n) = (1/4)*(2*p(j-1,n) - 1 + (-1)^p(j-1,n)). - Hieronymus Fischer, Jun 14 2007 a(n) = floor(1234567/99999999*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013 a(n) = floor(48913/2396745*8^(n+1)) mod 8. - Hieronymus Fischer, Jan 04 2013 MATHEMATICA Table[Mod[n, 8], {n, 0, 120}]   (* Harvey P. Dale, Apr 21 2011 *) PROG (PARI) vector(100, i, i)%8 \\ Charles R Greathouse IV, Jul 16 2011 (Python) def A010877(n): return n&7 # Chai Wah Wu, Jul 09 2022 CROSSREFS Partial sums: A130486. Other related sequences A130481, A130482, A130483, A130484, A130485. Cf. A000035, A010887, A010873, A130909, A168181, A244413, A253513. Sequence in context: A037850 A037886 A031045 * A309959 A257848 A195831 Adjacent sequences:  A010874 A010875 A010876 * A010878 A010879 A010880 KEYWORD nonn,easy AUTHOR EXTENSIONS Formula section re-edited for better readability by Hieronymus Fischer STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 07:57 EST 2022. Contains 358354 sequences. (Running on oeis4.)