login
A130486
a(n) = Sum_{k=0..n} (k mod 8) (Partial sums of A010877).
13
0, 1, 3, 6, 10, 15, 21, 28, 28, 29, 31, 34, 38, 43, 49, 56, 56, 57, 59, 62, 66, 71, 77, 84, 84, 85, 87, 90, 94, 99, 105, 112, 112, 113, 115, 118, 122, 127, 133, 140, 140, 141, 143, 146, 150, 155, 161, 168, 168, 169, 171, 174, 178, 183, 189, 196, 196, 197, 199, 202, 206
OFFSET
0,3
COMMENTS
Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 8, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010
FORMULA
a(n) = 28*floor(n/8) + A010877(n)*(A010877(n) + 1)/2.
G.f.: (Sum_{k=1..7} k*x^k)/((1-x^8)*(1-x)).
G.f.: x*(1 - 8*x^7 + 7*x^8)/((1-x^8)*(1-x)^3).
MAPLE
seq(coeff(series(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 31 2019
MATHEMATICA
Array[28 Floor[#1/8] + #2 (#2 + 1)/2 & @@ {#, Mod[#, 8]} &, 61, 0] (* Michael De Vlieger, Apr 28 2018 *)
Accumulate[PadRight[{}, 100, Range[0, 7]]] (* Harvey P. Dale, Dec 21 2018 *)
PROG
(PARI) a(n) = sum(k=0, n, k % 8); \\ Michel Marcus, Apr 28 2018
(Magma) I:=[0, 1, 3, 6, 10, 15, 21, 28, 28]; [n le 9 select I[n] else Self(n-1) + Self(n-8) - Self(n-9): n in [1..71]]; // G. C. Greubel, Aug 31 2019
(Sage)
def A130486_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3)).list()
A130486_list(70) # G. C. Greubel, Aug 31 2019
(GAP) a:=[0, 1, 3, 6, 10, 15, 21, 28, 28];; for n in [10..71] do a[n]:=a[n-1]+a[n-8]-a[n-9]; od; a; # G. C. Greubel, Aug 31 2019
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, May 31 2007
STATUS
approved