login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006324
a(n) = n*(n + 1)*(2*n^2 + 2*n - 1)/6.
12
1, 11, 46, 130, 295, 581, 1036, 1716, 2685, 4015, 5786, 8086, 11011, 14665, 19160, 24616, 31161, 38931, 48070, 58730, 71071, 85261, 101476, 119900, 140725, 164151, 190386, 219646, 252155, 288145, 327856, 371536, 419441, 471835, 528990, 591186
OFFSET
1,2
COMMENTS
4-dimensional analog of centered polygonal numbers.
Partial sums of A000447. - Zak Seidov, May 19 2006
From Johannes W. Meijer, Jun 27 2009: (Start)
Equals the absolute values of the coefficients that precede the a(n-1) factors of the recurrence relations RR(n) of A162011.
This sequence enabled the analysis of A162012 and A162013. (End)
Equals the number of integer quadruples (x,y,z,w) such that min(x,y) < min(z,w), max(x,y) < max(z,w), and 0 <= x,y,z,w <= n. - Andrew Woods, Apr 21 2014
For n>3 a(n)=twice the area of an irregular quadrilateral with vertices at the points (C(n,4),C(n+1,4)), (C(n+1,4),C(n+2,4)), (C(n+2,4),C(n+3,4)), and (C(n+3,4),C(n+4,4)). - J. M. Bergot, Jun 14 2014
FORMULA
a(n) = 8*C(n + 2, 4) + C(n + 1, 2).
a(n) = (Sum_{k=1..n} k^5) / (Sum_{k=1..n} k) = A000539(n) / A000217(n). - Alexander Adamchuk, Apr 12 2006
From Johannes W. Meijer, Jun 27 2009: (Start)
Recurrence relation 0 = Sum_{k=0..5} (-1)^k*binomial(5,k)*a(n-k).
G.f.: (1+6*z+z^2)/(1-z)^5. (End)
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, May 02 2021
Sum_{n>=1} 1/a(n) = 6 + 2*sqrt(3)*Pi*tan(sqrt(3)*Pi/2). - Amiram Eldar, Aug 23 2022
a(n) = A053134(n-1) - 4*A002415(n). - Yasser Arath Chavez Reyes, Feb 12 2024
MAPLE
A006324:=n->n*(n + 1)*(2*n^2 + 2*n - 1)/6; seq(A006324(n), n=1..30); # Wesley Ivan Hurt, Jun 14 2014
MATHEMATICA
Table[Sum[k^5, {k, n}]/Sum[k, {k, n}], {n, 40}] (* Alexander Adamchuk, Apr 12 2006 *)
PROG
(Magma) [ n*(n + 1)*(2*n^2 + 2*n - 1)/6 : n in [1..30] ]; // Wesley Ivan Hurt, Jun 14 2014
CROSSREFS
Cf. A162011, A162012, a(n-2), and A162013, a(n-3). - Johannes W. Meijer, Jun 27 2009
Sequence in context: A143059 A224142 A155014 * A372663 A256582 A231887
KEYWORD
nonn,easy
AUTHOR
Albert Rich (Albert_Rich(AT)msn.com), Jun 14 1998
EXTENSIONS
Simpler definition from Alexander Adamchuk, Apr 12 2006
More terms from Zak Seidov
STATUS
approved