login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006322 4-dimensional analog of centered polygonal numbers. 19
1, 8, 31, 85, 190, 371, 658, 1086, 1695, 2530, 3641, 5083, 6916, 9205, 12020, 15436, 19533, 24396, 30115, 36785, 44506, 53383, 63526, 75050, 88075, 102726, 119133, 137431, 157760, 180265, 205096, 232408, 262361, 295120, 330855 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005

Partial sums give A006414. - L. Edson Jeffery, Dec 13 2011

Also the number of (w,x,y,z) with all terms in {1,...,n} and w<=x>=y<=z, see A211795. - Clark Kimberling, May 19 2012

REFERENCES

S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/4).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.

R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]. See p. 31.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = 5*C(n + 2, 4) + C(n + 1, 2) = (C(5*n+4, 4)-1)/5^3 = n*(n+1)*(5*n^2+5*n+2)/24.

a(n) = (((n+1)^5-n^5)-((n+1)^3-n^3))/24. - Xavier Acloque, Jan 14 2003, corrected by Eric Rowland, Aug 15 2017

Partial sums of A004068. - Xavier Acloque, Jan 15 2003

G.f.: x*(1+3*x+x^2)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009

a(n) = sum(i=1..n, sum(j=1..n, i * min(i,j))). - Enrique Pérez Herrero, Jan 30 2013

a(n) = A000537(n) - A000332(n+2). - J. M. Bergot, Jun 03 2017

MATHEMATICA

Table[5*Binomial[n+2, 4] + Binomial[n+1, 2], {n, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)

CoefficientList[Series[(1 + 3 x + x^2) / (1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 31, 85, 190}, 40] (* Harvey P. Dale, Sep 27 2016 *)

PROG

(PARI) a(n)=n*(5*n^3+10*n^2+7*n+2)/24 \\ Charles R Greathouse IV, Dec 13 2011, corrected by Altug Alkan, Aug 15 2017

CROSSREFS

Cf. A000217, A000330, A006414, A050446, A050447.

Sequence in context: A212579 A115004 A005338 * A212064 A213764 A289613

Adjacent sequences:  A006319 A006320 A006321 * A006323 A006324 A006325

KEYWORD

nonn,easy

AUTHOR

Albert Rich (Albert_Rich(AT)msn.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 13:09 EST 2017. Contains 295127 sequences.