login
A224142
Number of n X 4 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
11, 46, 124, 272, 526, 930, 1536, 2404, 3602, 5206, 7300, 9976, 13334, 17482, 22536, 28620, 35866, 44414, 54412, 66016, 79390, 94706, 112144, 131892, 154146, 179110, 206996, 238024, 272422, 310426, 352280, 398236, 448554, 503502, 563356, 628400
OFFSET
1,1
COMMENTS
Column 4 of A224146.
LINKS
FORMULA
Empirical: a(n) = (1/3)*n^4 + (4/3)*n^3 + (14/3)*n^2 + (23/3)*n - 4 for n>1.
Conjectures from Colin Barker, Aug 27 2018: (Start)
G.f.: x*(11 - 9*x + 4*x^2 + 2*x^3 + x^4 - x^5) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.
(End)
EXAMPLE
Some solutions for n=3:
..0..1..0..0....0..0..0..0....0..0..0..0....0..0..1..0....1..1..1..0
..0..1..1..0....0..1..0..0....1..1..1..0....0..0..1..1....1..1..1..1
..0..1..1..0....1..1..0..0....1..1..1..1....0..1..1..1....1..1..1..1
CROSSREFS
Cf. A224146.
Sequence in context: A223834 A359096 A143059 * A155014 A006324 A372663
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 31 2013
STATUS
approved