login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006327 Fibonacci numbers - 3. Number of total preorders.
(Formerly M1371)
20
0, 2, 5, 10, 18, 31, 52, 86, 141, 230, 374, 607, 984, 1594, 2581, 4178, 6762, 10943, 17708, 28654, 46365, 75022, 121390, 196415, 317808, 514226, 832037, 1346266, 2178306, 3524575, 5702884, 9227462, 14930349, 24157814, 39088166, 63245983, 102334152, 165580138 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,2

COMMENTS

Minimal cost of maximum height Huffman tree of size n. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 25 2004

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 4..1000

G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.

G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

A. Sapounakis, I. Tasoulas and P. Tsikouras, On the Dominance Partial Ordering of Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.5.

A. B. Vinokur, Huffman trees and Fibonacci numbers, Kibernetika Issue 6 (1986) 9-12 (in Russian); English translation in Cybernetics 21, Issue 6 (1986), 692-696.

Alex Vinokur, Fibonacci connection between Huffman codes and Wythoff array, arXiv:cs/0410013 [cs.DM], 2004-2005.

Index entries for linear recurrences with constant coefficients, signature (2,0,-1)

FORMULA

G.f.: x^5*(2 + x)/((1-x)*(1-x-x^2)); a(n) = a(n-1) + a(n-2) + 3.

a(n+3) = Sum_{k=-n+1..n} F(abs(n)+1). - Paul Barry, Oct 24 2007

a(n) = F(4*n) mod F(n+1) = F(n) - (F(n+4)^2 - F(n)^2)/F(2*n+4). - Gary Detlefs, Apr 02 2012

EXAMPLE

2*x^5 + 5*x^6 + 10*x^7 + 18*x^8 + 31*x^9 + 52*x^10 + 86*x^11 + ...

MAPLE

with(combinat):a:=n->sum(fibonacci(j), j=3..n): seq(a(n), n=2..34); # Zerinvary Lajos, Oct 03 2007

A006327:=(2+z)/(z-1)/(z**2+z-1); # conjectured by Simon Plouffe in his 1992 dissertation

MATHEMATICA

Fibonacci[Range[4, 40]] - 3 (* Vladimir Joseph Stephan Orlovsky, Mar 19 2010 *)

PROG

(PARI) a(n)=fibonacci(n)-3 \\ Charles R Greathouse IV, Feb 03 2014

CROSSREFS

A diagonal of A079502.

Cf. A000045, A001611, A000071, A157725, A001911, A157726, A006327, A157727, A157728, A157729, A167616. [Added by N. J. A. Sloane, Jun 25 2010 in response to a comment from Aviezri S. Fraenkel]

Sequence in context: A117485 A084835 A034350 * A185721 A103577 A079006

Adjacent sequences:  A006324 A006325 A006326 * A006328 A006329 A006330

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, Simon Plouffe

EXTENSIONS

Offset corrected by Gary Detlefs, Apr 02 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 18 14:30 EST 2017. Contains 296177 sequences.